Multi Model Approach for **Alternative Taggings**

Roman Klinger, Christoph M. Friedrich and Juliane Fluck

Department of Bioinformatics

Overview

- 1. Generate Trainingdata depending on different lengths of annotations 2. Build different Conditional Random Fields
- 3. Tag testdata and combine it with different strategies
- 4. Postprocessing

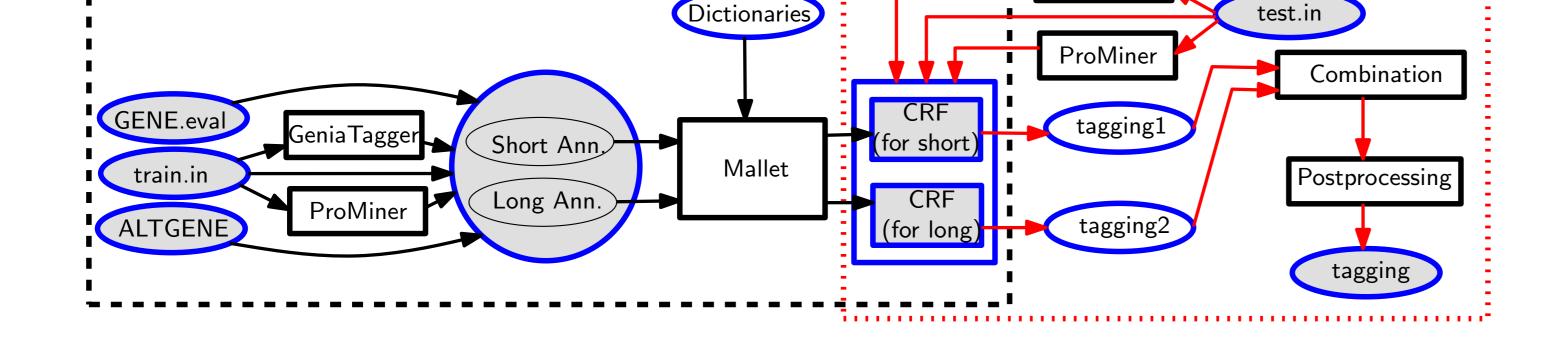
Training

• Bracket Correction, Acronym Disambiguation using LSA

Problem Description

- Characteristic in BioCreative 2006:
- Trainingdata provides acceptable alternatives additional to gold standard
- Problem: Ambiguities Examples:
- -On the other hand factor IX activity is decreased in coumarin treatment with **factor IX** antigen remaining

Fraunhofer Institute Algorithms and Scientific Computing



- normal.
- -The arginyl peptide bonds that are cleaved in the conversion of human factor IX to factor IXa by factor XIa were identified as Arg145-Ala146 and Arg180-Val181.

(Gold Standard Alternative)

Multi Model Approach

How to use the alternative annotations?

- Two Trainingsets:
- Shortest possible annotation: Example (see 2nd sentence above): factor IX and factor IXa and factor XIa
- -Longest possible annotation: Example:
- human factor IX and factor IXa and factor XIa

How to deal with different taggings?

- Assume as example:
 - ...fibrinogen degradation products (FDP)...
- -Long Annotator: fibrinogen degradation products -Short Annotator: fibrinogen; FDP

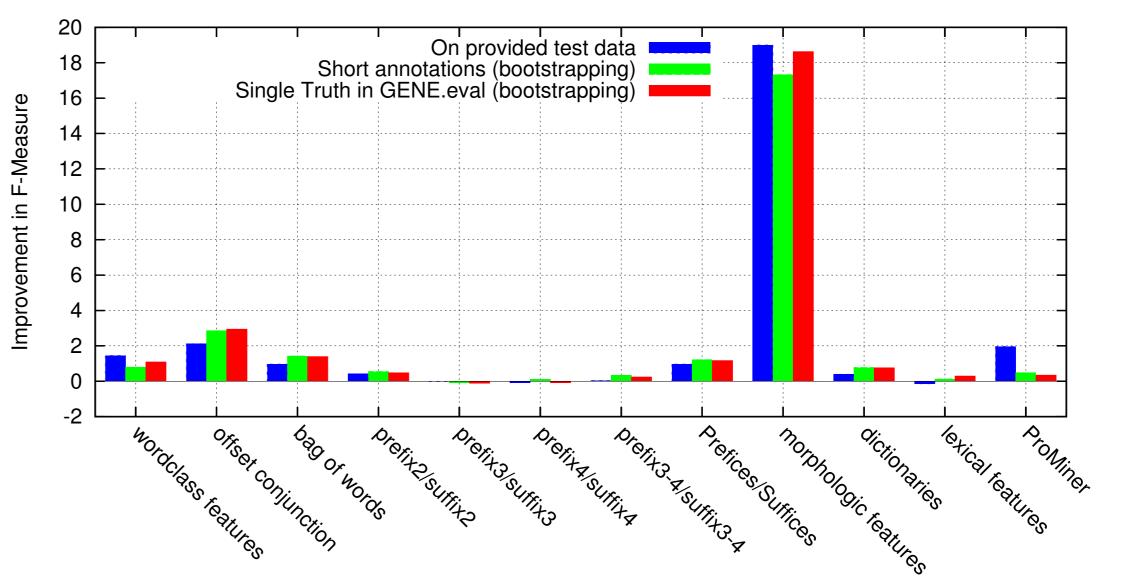
Model Selection

- Bootstrapping with 50 replicates
- Compared different tokenisations, impact is 2.48% on test data
- Rich set of features

Tagging

GeniaTagge

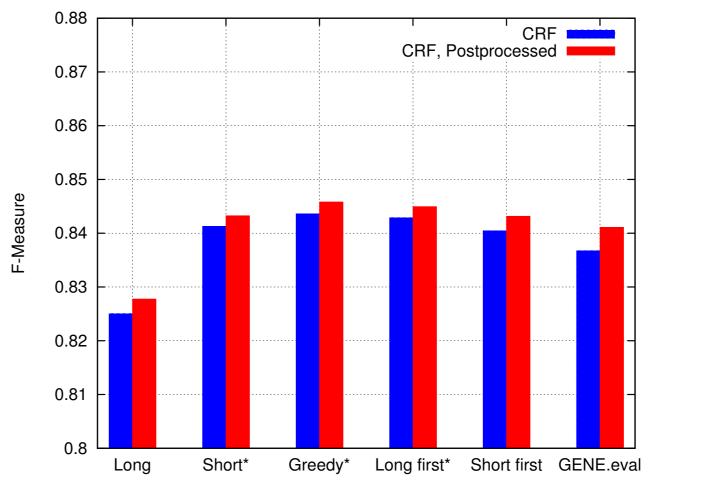
- Morphological, some automatically generated like bag-of-words, prefixes, suffixes, (brief) word class...
- POS/Shallow Parsing: GeniaTagger
- Annotations from ProMiner [1] as features
- \rightarrow Very high precision because of mapping to UniProt and EntrezGene
- Difficult to analyse optimal combination of features Example: prefixes with different length (see figure)

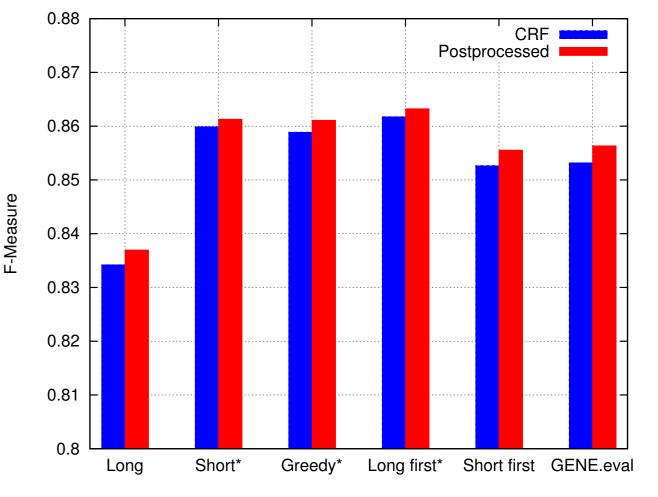


- Use long annotation first, then add short annotation (without overlaps): fibrinogen degradation products and FDP
- Use short annotation first, then add long annotation (without overlaps): fibrinogen and FDP
- Greedy: Combine both (with overlaps): fibrinogen and FDP and fibrinogen degradation products

Results and Discussion

	E	Bootstrapping on Trainingset						On Testset		
Model	Precision		Recall		F-Score		Precision	Recall	F-Score	
GENE.eval	86.61	(0.0071)	81.76	(0.0123)	84.11	(0.0076)	87.86	83.53	85.64	
Long Short*						(0.0064)		80.29 83.83	83.70 86.13	
Greedy*						(0.0047)		90.63	86.11	
Long first* Short first								85.41 85.61	<mark>86.33</mark> 85.56	





On Testdata

- Short Annotation: best Precision
- Long Annotation: harder to find, but mostly matches author's mind
- \Rightarrow Good trade-off: Long first combination

• Greedy Combination: High Recall because of redundant annotation \Rightarrow good precondition for normalisation tasks • Remarkable differences between results on test set using bootstrapping and training set are untypical

 \rightarrow Impact of ProMiner?

References

[1] D. Hanisch, K. Fundel, H. T Mevissen., R. Zimmer, and J. Fluck. ProMiner: Organism-specific protein name detection using approximate string matching. Proceedings of the BioCreative Challenge Evaluation Workshop 2004, 2004. [2] A. K. McCallum. MALLET: A Machine Learning for Language Toolkit. http://mallet.cs.umass.edu, 2002.

This work is partially funded by the MPG-FHG Machine Learning Collaboration: http://lip.fml.tuebingen.mpg.de/

Contact

Roman Klinger roman.klinger@scai.fraunhofer.de http://www.scai.fraunhofer.de