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Problem Description

e Applications have different demands on Example data to find person names:
Named Entity Recognition, e.q.

n

_ _ Text: “... John F. Kennedy inspired the name of the airport JFK ...
— Information Extraction:

. . . _ Annotation: John F. Kennedy < perfect, but difficult
High precision is needed to only extract true information . . ..
nf . on Retrieval: Annotation: & high precision
- nformation Retrieval: Annotation: John F. Kennedy JFK < high recall
High recall to not miss important resources
= Decision can only be made by the user, not by the developer! TP TP o Fo— (14+B%)-prec-rec

e Precision prec = +5 5 e Recall rec = 757 BLprecirec

Background Existing Solutions

e Conditional Random Fields are a class of probabilistic graphical models e Train what you need [4]
—Typical Application in NLP: Text Segmentation, e.g. Named Entity Recognition - Smooth objective function, train gradient-based
e Conditional Random Fields are typically trained to maximize accuracy — Application needs to be known at training time: not always possible
(via maximum log-likelihood and gradient-based optimization) e Select solutions at inference step [1]
e Evaluation is typically performed wrt. Fy measure —Train via maximum likelihood, compute confidences of solutions with forward-backward
¢ What is really what we need? algorithm, set threshold

= Depends on individual requirements! — Decreases Speed

max Fy5 = High Precision, max F, = High Recall, max f; = Similar Precision and Recall

Multi Objective Optimization MOCRF

e Non-Dominated Sorting Genetic Algorithm Il (NSGA-Il) optimizes Multi Objective Optimization of CRF:
multiple objective functions Initialization Initial parameters found by optimizing

parameters A wrt. log-likelihood log P:(g|x) (with token
sequence X and segmentation sequence i)
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e Pareto-Optimal set of solutions of non-dominated solutions is

provided _ . .
L _ Non-Domination: Mutatlo-n Vk. : mut(Ag) = Ax + N(0, ) with stepsize ¢ = 0.01
Mutation No solutions exist with at least one better objective value Recombination Select randomly from ;
e Evolutionary Algorithm: Specification needed for im(A1, A2) = ((/\1,1 +A20)12, o (Mg + /\2,,,)/2)
Selection — Initialization CO(X1’)T2) _ ()\11’“.,)\1 r:)\2r+1:---r)\2n)T
_ _/ — Variation: Mutation, Recombination — :
Evaluation Objective Functions

— Selection via objective functions o
e Precision e Recall

Res u Its Training pareto-front and independent test
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o CRF with fairly standard feature set, feature selection [2] g g
— 23000 features and 38000 features 0-7 0.7
e 100 individuals, 100 iterations for genetic algorithm
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e User can select the appropriate model for the particular application without additional Staring poin, raining set M waining s max Fos
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e Working well for BioCreative, small increase of recall for CoNLL Best Fg, multiple solutions vs. one likelihood-based solution
— Problem of multiple entities of interest BC2 CoNLL
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e Result in Fg measure greater than for classical likelihood optimization for nearly all 0.95 0.95
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