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Abstract

Several datasets have been annotated and published for classification of emotions. They differ
in several ways: (1) the use of different annotation schemata (e. g., discrete label sets, including
joy, anger, fear, or sadness or continuous values including valence, or arousal), (2) the domain,
and, (3) the file formats. This leads to several research gaps: supervised models often only use a
limited set of available resources. Additionally, no previous work has compared emotion corpora
in a systematic manner. We aim at contributing to this situation with a survey of the datasets,
and aggregate them in a common file format with a common annotation schema. Based on this
aggregation, we perform the first cross-corpus classification experiments in the spirit of future
research enabled by this paper, in order to gain insight and a better understanding of differences
of models inferred from the data. This work also simplifies the choice of the most appropriate
resources for developing a model for a novel domain. One result from our analysis is that a subset
of corpora is better classified with models trained on a different corpus. For none of the corpora,
training on all data altogether is better than using a subselection of the resources. Our unified
corpus is available at http://www.ims.uni-stuttgart.de/data/unifyemotion.

Title and Abstract in German

Eine Analyse von annotierten Korpora zur Emotionsklassifizierung in Text

Es existieren bereits verschiedene Textkorpora, welche zur Erstellung von Modellen für die
automatische Emotionsklassifikation erstellt wurden. Sie unterscheiden sich (1) in den unter-
schiedlichen Annotationsschemata (z.B. diskrete Klassen wie Freude, Wut, Angst, Trauer oder
kontinuierliche Werte wie Valenz und Aktivierung), (2) in der Domäne, und, auf einer technischen
Ebene, (3) in den Dateiformaten. Dies führt dazu, dass überwacht erstellte Modelle typischerweise
nur einen Teil der verfügbaren Ressourcen nutzen sowie kein systematischer Vergleich der Korpora
existiert. Hier setzt unsere Arbeit mit einem Überblick der verfügbaren Datensätze an, welche
wir in ein gemeinsames Format mit einem einheitlichen Annotationsschema konvertieren. Darauf
aufbauend führen wir erste Experimente durch, in dem wir auf Teilmengen der Korpora trainieren
und auf anderen testen. Dies steht im Sinne zukünftiger, durch unsere Arbeit ermöglichten Analy-
sen, die Unterschiede zwischen den Annotationen besser zu verstehen. Des Weiteren vereinfacht
dies die Wahl einer angemessenen Ressource für die Erstellung von Modellen für eine neue
Domäne. Wir zeigen unter anderem, dass die Vorhersagen für einige Korpora besser funktioniert,
wenn ein Modell auf einer anderen Ressource trainiert wird. Weiterhin ist für kein Korpus die
Vorhersage am besten, wenn alle Daten vereint werden. Unser aggregiertes Korpus ist verfügbar
unter http://www.ims.uni-stuttgart.de/data/unifyemotion.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/



1 Introduction

Emotion detection and classification in text focuses on mapping words, sentences, and documents to a set
of emotions following a psychological model such as those proposed by Ekman (1992), Plutchik (1980)
or Russell (1980), inter alia. The task has emerged from a purely research oriented topic to playing a role
in a variety of applications, which include dialog systems (chatbots, tutoring systems), intelligent agents,
clinical diagnoses of mental disorders (Calvo et al., 2017), or social media mining.

As the variety of applications is large, the set of domains and differences in text is large. An early work,
motivated by the goal to develop an empathic storyteller for children stories, is the corpus creation and
modelling of emotions in tales by Alm et al. (2005). Afterwards, the idea has been transferred to the Web,
namely blogs (Aman and Szpakowicz, 2007), and microblogs (Schuff et al., 2017; Mohammad, 2012;
Wang et al., 2012). A different domain under consideration are news articles: Strapparava and Mihalcea
(2007) focus on emotions in headlines. It can be doubted that emotions are expressed in a comparable
way in these different domains: Journalists ideally tend to be objective when writing articles, authors of
microblog posts need to focus on brevity, and one might assume that emotion expressions in tales are
more subtle and implicit than, for instance, in blogs. Therefore, the transfer across emotion recognition
models is, presumably, challenging. The most straight-forward alternative is, however, to build resources
from scratch, a costly process. Given this situation, it remains unclear, given a novel domain for which an
emotion recognition system should be developed, how to start. Next to the methodological issues we just
discussed, another challenge is to acquire and compare available corpora.

With this paper, we aim at contributing to all these challenges. We support future research by comparing
existing datasets, exploring how they complement each other, and mapping them to a common format
such that future emotion detection can benefit from being developed on different domains and annotation
schemata. In addition, we perform cross-corpus experiments by training classifiers on each dataset and
evaluating them on others. One challenge here is that corpora are from different domains and are annotated
following different guidelines and schemata. We aim at helping to make decisions which support the best
model development for a future domain by selecting appropriate corpora. Parameters to be taken into
account are the source of the text (e. g., blogs, news, social media), the annotation schema (e. g., Plutchik,
Ekman, subsets of them), and the annotation procedure (e. g. crowdsourcing, self-reporting, expert-based,
distant labeling). Our main contributions are therefore (1) to describe existing resources, (2) to evaluate
which state-of-the-art classifiers perform well when trained on one dataset and applied on another, (3) to
evaluate which datasets generalize best to other domains, and (4) to compare the datasets qualitatively
and quantitatively. To achieve our goals and as additional support for future research, we unify all
available datasets in a common file format. We provide a script that downloads and converts the datasets,
and instructs on how to obtain datasets where the license requires no redistributions. Our resources
are available via http://www.ims.uni-stuttgart.de/data/unifyemotion. We aim at
keeping the unified corpus up to date in the future.

2 Background & Related work

In the following, we discuss differences in psychological models and annotation schemata (Section 2.1),
annotation procedures (Section 2.2), different domains and topics (Section 2.3), and different prediction
methods (Section 2.4). An overview on the resources and previous work is shown in Table 1. In addition
to this, we recommend the surveys by Munezero et al. (2014) and Santos and Maia (2018).

2.1 Emotion Models in Psychology & Annotation Schemata
Emotion models are still debated in psychology (Barrett et al., 2018; Cowen and Keltner, 2018). We
do not contribute to these debates but focus on the main theories in psychology and natural language
processing (NLP): discrete and finite sets of emotions (categorical models) and combinations of different
continuous dimensions (dimensional models).

Early work on emotion detection (Alm et al., 2005; Strapparava and Mihalcea, 2007) focused on
conceptualizing emotions by following Ekman’s model which assumes the following six basic emotions:
anger, disgust, fear, joy, sadness and surprise (Ekman, 1992). Suttles and Ide (2013), Meo and Sulis



(2017), and Abdul-Mageed and Ungar (2017) follow the Wheel of Emotion (Plutchik, 1980; Plutchik,
2001) which also considers emotions as a discrete set of eight basic emotions in four opposing pairs:
joy–sadness, anger–fear, trust–disgust, and anticipation–surprise, together with emotion mixtures.

Dimensional models were more recently adopted in NLP (Preoţiuc-Pietro et al., 2016; Buechel and
Hahn, 2017a; Buechel and Hahn, 2017b): The circumplex model (Russell and Mehrabian, 1977) puts
affective states into a vector space of valence (corresponding to sentiment/polarity), arousal (corresponding
to a degree of calmness or excitement), and dominance (perceived degree of control over a given situation).
Any emotion is a linear combination of these.

2.2 Annotation Procedures
A standard way to create annotated datasets is via expert annotation (Aman and Szpakowicz, 2007;
Strapparava and Mihalcea, 2007; Ghazi et al., 2015; Li et al., 2017; Schuff et al., 2017; Li et al., 2017).
However, having an expert annotate a statement means that they must estimate the private state of the
author. Therefore, the creators of the ISEAR dataset follow a different, but similar, route making use of
self reporting: subjects are asked to describe situations associated with a specific emotion (Scherer and
Wallbott, 1994). This approach can be considered an annotation by experts in their own right.

Crowdsourcing, for instance using the platforms Amazon’s Mechanical Turk1 or CrowdFlower2, is
another way to acquire human judgments. Crowdsourcing often lacks sufficient quality control but
some popular datasets have been successfully acquired with this approach, e. g., the dataset released by
Crowdflower for Cortana3 or the datasets constructed by Milnea et al. (2015) and Lapitan et al. (2016).
Another example is the dataset by Mohammad (2012), who design two detailed online questionnaires and
annotate tweets by crowdsourcing.

Lastly, social networks play a central role in data acquisition with distant supervision (also called
self-labeling in this context), because they provide a quick and cheap way to get large amounts of noisy
data annotated by writers or readers (Mohammad and Kiritchenko, 2015; Abdul-Mageed and Ungar, 2017;
De Choudhury et al., 2012; Liu et al., 2017). For example, on Twitter one could add a “#joy” hashtag
to a happy tweet or on Facebook one could tag personal posts with a “feeling” and people can show an
emotional “surprised reaction”. In this last example, two levels of annotation are provided that are relevant
to emotion analysis, namely both the reader’s and the writer’s emotional state. Accessing this information
is comparably straight-forward in these social network platforms. More challenging is to acquire such
data for other domains. Buechel and Hahn (2017a) and Buechel and Hahn (2017b) look specifically into
distinguishing between writers’ and readers’ emotion expressions.

It should be noted that some of these approaches exist in parallel to previous research in assessing
emotion states of people, despite the fact that standardized psychological instruments exist (Bradley and
Lang, 1994).

2.3 Domains and Topics
Previous work on emotion detection focuses on different domains and topics, e. g., descriptions of self
reported emotional events (Scherer and Wallbott, 1994), news (Lei et al., 2014; Buechel et al., 2016),
news headlines (Strapparava and Mihalcea, 2007), blogs (Aman and Szpakowicz, 2007), tales (Alm et al.,
2005), micro-blog posts (i. e., tweets) (Wang et al., 2012) to different domains, such as health, politics
(Mohammad, 2012), and stock markets (Bollen et al., 2011).

An early example and one of the first initiatives of emotion classification is the work by Aman and
Szpakowicz (2007), who use blog posts, sampled without taking a specific topic into account. They
identify the emotion, category, intensity and cue words and phrases. Mishne and de Rijke (2005), Balog et
al. (2006) and Nguyen et al. (2014) works on LiveJournal4 data to develop predictive models for moods.

Similarly, user-generated data in social media has been a subject of research. Mohammad et al. (2015)
and Mohammad and Bravo-Marquez (2017b) annotate electoral tweets for sentiment, intensity, semantic

1https://www.mturk.com/
2https://www.crowdflower.com/
3https://www.crowdflower.com/data/sentiment-analysis-emotion-text/
4https://www.livejournal.com



roles, style, purpose and emotions. De Choudhury et al. (2012) identify more than 200 moods frequent on
Twitter. Mohammad (2012), Mohammad et al. (2015), Wang et al. (2012), Volkova and Bachrach (2016)
make use of Twitter distantly labeled data. Recently, Liu et al. (2017) analyzed the role of context that
grounds sentiment in tweets, and looked into whether the effect of weather and news events relate to the
emotion expressed in a given tweet. EmoNet is claimed to be the largest dataset constructed of tweets
(Abdul-Mageed and Ungar, 2017) .

Twitter is often the preferred subject of research as it is easy to use and has a well-documented API.
However, Facebook is also used, e. g., Preoţiuc-Pietro et al. (2016) create a dataset of Facebook posts and
train prediction models for valence and arousal. Pool and Nissim (2016) and Krebs et al. (2017) make
use of the reaction feature in Facebook to collect labeled data for distant supervision of a classifier. A
different approach within the same domain was used by Polignano et al. (2017) who labeled posts with
emoticons mapped to Ekman’s model.

Data in social media can be in the form of dialogues. Li et al. (2017) manually label a dataset of
conversations. Wang et al. (2016) introduce EmotionPush, a system that automatically conveys the
emotion of received text on mobile devices, deployed on Facebook’s messenger app. From the same
domain, but on a different topic is the study of patients’ emotional states dynamics expressed by their
Facebook posts (Lombardo et al., 2017).

Motivated by the work of literary scholars is the creation of datasets to study emotion in literature. One
of the first datasets is the tales corpus by Alm et al. (2005). Kim et al. (2017) investigate the relationship
between literary genres and emotions.

2.4 Methods used in Emotion Identification

Emotion classification is commonly phrased as text classification. As text classification in general, the
array of methods seen for emotion classification can be divided into rule-based methods and machine
learning, which we discuss in the following.

2.4.1 Rule-based Algorithms
Rule-based text classification typically builds on top of lexical resources of emotionally charged words.
These dictionaries can originate from crowdsourcing or expert curation. Examples include WordNet-
Affect (Strapparava et al., 2004) and SentiWordNet (Esuli and Sebastiani, 2007), both of which stem
from expert annotation. Partly built on top of them is the NRC Word-Emotion Association Lexicon
(Mohammad et al., 2013), which uses the eight basic emotions (Plutchik, 1980). Warriner et al. (2013)
use crowdsourcing to assign values of valence, arousal, and dominance (Russell, 1980).

Another related category of lexical resources which has been used for emotion analysis is concreteness
and abstractness (Köper et al., 2017). Brysbaert et al. (2014) publish a lexicon based on crowdsourcing,
where the task was to assign a rating from 1 to 5 of the concreteness of 40,000 words. Similarly, Köper
and Schulte im Walde (2016) automatically generate affective norms of abstractness, arousal, imageability,
and valence for 350,000 lemmas in German. Lastly, the Linguistic Inquiry and Word Count (LIWC)
is a set of 73 lexicons (Pennebaker et al., 2001), built to gather aspects of lexical meaning regarding
psychological tasks. Dictionary and rule-based approaches are particularly common in the field of digital
humanities due to their transparency and straightforward use.

2.4.2 Machine Learning
A performance improvement over dictionary lookup has been observed with supervised feature-based
learning. Common features include word n-grams, character n-grams, word embeddings, affect lexicons,
negation, punctuation, emoticons, or hashtags (Mohammad, 2012) . This feature representation is then
usually used as input to feed classifiers such as naive Bayes, SVM (Mohammad, 2012), MaxEnt and
others to predict the relevant emotion category (Aman and Szpakowicz, 2007; Alm et al., 2005). Similarly
to the paradigm shift in sentiment analysis, from feature-based modelling to deep learning, state-of-the-art
models for emotion classification are often based on neural networks (Barnes et al., 2017). Schuff et
al. (2017) applied models from the classes of CNN, BiLSTM (Schuster and Paliwal, 1997), and LSTM
(Hochreiter and Schmidhuber, 1997) and compare them to linear classifiers (SVM and MaxEnt), where the



Dataset Granularity Annotation Size Topic Source Avail.

AffectiveText headlines E + V 1,250 news Strapparava (2007) D-U
Blogs sentences E + ne + me 5,025 blogs Aman (2007) R
CrowdFlower tweets E + CF 40,000 general Crowdflower (2016) D-U
DailyDialogs dialogues E 13,118 multiple Li et al. (2017) D-RO
Electoral-Tweets tweets P 4,058 elections Mohammad (2015) D-RO
EmoBank sentences V+A+D 10,548 multiple Buechel (2017a) CC-by4
EmoInt tweets E − DS 7,097 general Mohammad (2017b) D-RO
Emotion-Stimulus sentences E + shame 2,414 general Ghazi et al. (2015) D-U
fb-valence-arousal faceb. posts V+A 2,895 questionnaire Preoţiuc (2016) D-U
Grounded-Emotions tweets HS 2,585 weather/events Liu et al. (2017) D-U
ISEAR descriptions E + SG 7,665 events Scherer (1994) GPLv3
Tales sentences E 15,302 fairytales Alm et al. (2005) GPLv3
SSEC tweets P 4,868 general Schuff et al. (2017) D-RO
TEC tweets E ±S 21,051 general Mohammad (2012) D-RO

Table 1: Selection of resources for emotions analysis. Ann. refers to the following annotation schemata:
[E] Ekman: anger, disgust, fear, joy, sadness, surprise, [P] Plutchik: anger, disgust, fear, joy, sadness,
surprise, trust, anticipation, [CF] enthusiasm, fun, hate, neutral, love, boredom, relief, empty, [DS] disgust,
surprise, [JS] happy, sad, [V] valence, [A] arousal, [D] dominance, [SG] shame, guilt, [±S] positive
surprise, negative surprise, [ne] no emotion [me] mixed emotion and Availability refers to the following
[D-RO] Available to download, research only, [D-U] Available to download, unknown licensing, [R]
Available upon request, [GPLv3] GNU Public License version 3, [CC-by 4] Creative Commons Attribution
version 4.0

BiLSTM show best results with the most balanced precision and recall. Abdul-Mageed and Ungar (2017)
claim the highest F1 following Plutchik’s emotion model with gated recurrent unit networks (Chung et al.,
2015).

One approach to tackle sparsity of datasets is transfer learning; to make use of similar resources and
then transfer the model to the actual task. A recent successful example for this procedure is Felbo et al.
(2017) who present a neural network model trained on emoticons which is then transfered to different
downstream tasks, namely the prediction of sentiment, sarcasm, and emotions.

3 Unified Dataset of Emotion Annotations

In this section, we describe each dataset we aggregate in our unified corpus. We provide a brief description
and then show how the different schemata are merged. Please note that our interpretation might differ
from the author’s original description (though we aimed at avoiding that).

3.1 Datasets Overview
AffectiveText The dataset AffectiveText published by Strapparava and Mihalcea (2007) is built on news

headlines and consists of 1,250 instances. The main goal of this resource is the classification of
emotions and valence in news headlines. The annotation schema follows Ekman’s basic emotions,
complemented by valence. It is multi-label annotated via expert annotation and can be freely
downloaded, the license is not specified. The emotion categories are assigned a score from 0 to
100. Training/developing data amounts to 250 annotated headlines, while systems are evaluated on
another 1,000 instances.

Blogs This dataset, published by Aman and Szpakowicz (2007) consists of 5,205 sentences from 173
blogs. Instances are annotated with one emotion label each, emotion intensity and emotion indicators.
The annotation schema for the emotion category corresponds to the six fundamental Ekman emotions
to which no emotion is added. This resource can be obtained through contacting the authors.

CrowdFlower The dataset “The Emotion in Text, published by CrowdFlower” consists of 39,740 tweets.
Part of this data has been used in Microsoft’s Cortana Intelligence Gallery. The set of labels is
non-standard (see Table 4). It is annotated via crowdsourcing with one label per tweet and can be
freely downloaded, the license is not specified. The data is comparably noisy.



DailyDialogs The dataset, published by Li et al. (2017), is built on conversations and consists of 13,118
sentences. The annotation schema follows Ekman, complemented by “no emotion”. It is single label
annotated via expert annotation and can be freely downloaded for research purposes. This dataset
has additional annotations for communication intention and topic.

Electoral-Tweets The dataset, published by Mohammad et al. (2015), targets the domain of elections.
It consists of over 100,000 responses to two detailed online questionnaires (the questions targeted
emotions, purpose, and style in electoral tweets). The tweets are annotated via crowdsourcing. The
set of labels for emotion is non-standard (see Table 1). In addition to document-level annotations,
tweets are annotated with emotion words. It can be freely downloaded for research purposes.

EmoBank The dataset published by Buechel and Hahn (2017a) builds on multiple genres and domains.
It consists of 10,548 sentences where each sentence was manually annotated according to both
the emotion which is expressed by the writer, and the emotion which is perceived by the readers.
The annotations are according to the valence-arousal-dominance model. A subset of the corpus is
AffectiveText, which makes this dataset a good resource to design models that map between both
discrete or dimensional representations.

EmoInt The EmoInt published by Mohammad and Bravo-Marquez (2017a) builds on social media
content that amounts to 7,097 tweets altogether. The main goal of this resource is to associate text
with various intensities of emotion. The tweets are annotated via crowdsourcing with intensities of
anger, joy, sadness, and fear, while most tweets are only annotated with one emotion. It can be
freely downloaded for research purposes.

Emotion-Stimulus The Emotion-Stimulus dataset published by Ghazi et al. (2015) consists of 820
sentences which are annotated both with emotions and their causes, and 1,549 sentences which are
marked only with their emotion. The set of labels used for annotation consists of Ekman’s basic
emotions to which shame is added. The main goal of this resource is to predict the cause of an
emotion in the text. It is annotated using FrameNet’s emotions-directed frame with one emotion
label per sentence. It is available for download for research purposes.

fb-valence-arousal The fb-valence-arousal dataset published by Preoţiuc-Pietro et al. (2016) is built
on Facebook posts. It consists of 2,895 posts stratified by age and gender. The main goal of this
resource is to train prediction models for valence and arousal. Each message is written by a distinct
user and all messages are from the same time interval. The posts are annotated with valence and
arousal on a nine point scale via expert annotation. It is available for download.

Grounded-Emotions The dataset published by Liu et al. (2017) is built on social media and consists of
2,557 single labeled instances published by 1,369 unique users. The main goal of this resource is
to put emotions into context of other factors including weather, news events, social network, user
predisposition, and timing. The set of labels is happy and sad. The tweets are annotated by the
authors. The information is used in experiments aiming at showing the role played by external
context in predicting emotions.

ISEAR The “International Survey on Emotion Antecedents and Reactions” dataset published by Scherer
and Wallbott (1994) is built by collecting questionnaires answered by people with different cultural
backgrounds. These people report on their own emotional events. The final dataset contains reports
by approximately 3,000 respondents, for a total of 7,665 sentences labeled with single emotions. The
labels are joy, fear, anger, sadness, disgust, shame, and guilt. It is available for download.

SSEC The Stance Sentiment Emotion Corpus published by Schuff et al. (2017) is an annotation of
the SemEval 2016 Twitter stance and sentiment dataset (Mohammad et al., 2017). It consists of
4,868 tweets. The main goal of this resource is to enable further research on the relations between
emotions and other factors. It is annotated via expert annotation with multiple emotion labels per
tweet following Plutchik’s fundamental emotions. An additional feature of this resource is that they
not only provide a majority annotation but publish the individual information for all annotators.

Tales The Tales corpus published by Alm et al. (2005) is built on literature and consists of 15,302
sentences from 185 fairytales by B. Potter, H.C. Andersen and the brothers Grimm. Out of these
15,302 sentence, all annotators agree only on 1,280. The main goal of this resource is to build



joy anger sadness disgust fear surprise
Dataset o m o m o m o m o m o m
AffectiveText 619 619 374 374 650 650 253 253 537 537 787 787
Blogs 848 536 884 179 883 173 882 172 861 115 847 115
CrowdFlower 5,209 9,220 110 1,421 5,165 5,123 — 179 8,459 8,430 2,187 2,177
DailyDialogs 12,885 12,885 1,022 1,022 1,150 1,150 353 353 74 174 1,823 1,823
Electoral-Tweets 267 349 300 569 34 31 1,937 1,638 80 91 259 251
EmoInt 1,616 1,616 1,701 1,701 1,533 1,533 — — 2,252 2,252 — –
Emotion-Stimulus 479 479 483 483 575 575 95 95 423 423 213 213
Grounded-Emotions 1,530 1,530 — — 1,055 1,055 — — — — — —
ISEAR 1,094 1,094 1,096 1,096 3,285 3,285 1,096 1,096 1,095 1,095 —
SSEC 2,067 2,067 2,902 2,902 2,644 2,644 2,183 2,183 1,840 1,840 1,108 1,108
Tales 107 107 195 195 116 116 14 14 111 111 90 90
TEC 8,240 8,237 1,555 1,555 3,830 3,830 761 761 2,816 2,816 3,849 3,849
Total 34,961 38,739 10,622 11,497 21,920 20,165 7,574 6,744 16,708 17,884 11,162 10,413

Table 2: The distribution of categories across the datasets, limited to anger, disgust, fear, joy, sadness and
surprise. Non-availability of a class in a set is marked with —. [o]: original distributions, without taking
high agreement annotations; [m]: counts after mapping to our labels (see Table 4).

emotion classifiers for literature. The annotation schema consists of Ekman’s six basic emotions.
In the final data the labels angry and disgust are merged. It can be freely downloaded for research
purposes.

TEC The Twitter Emotion Corpus published by Mohammad (2012) is built on social media. It consists
of 21,051 tweets. The main goal of this resource is answering the question if emotion-word hashtags
can successfully be used as emotion labels. The annotation schema corresponds to Ekman’s model
of basic emotions. They collected tweets with hashtags corresponding to the six Ekman emotions:
#anger, #disgust, #fear, #happy, #sadness, and #surprise, therefore it is distantly single-label
annotated. It can be freely downloaded for research purposes.

3.2 Analysis

The majority of resources consists of user generated data. The biggest dataset is CrowdFlower with 39,740
annotated tweets, followed by TEC with 21,051 tweets, and Blogs with 15,000 annotated sentences from
blog posts. Out of all 14 resources, 9 are annotated with the six fundamental emotions defined by Ekman,
with small variations. SSEC and Electoral-Tweets follow Plutchik’s model. Electoral-Tweets is annotated
with 19 emotions and the authors provide a mapping to Plutchik’s set (which we follow in the aggregation).
Non-fundamental emotions are annotated in CrowdFlower (fun, worry, enthusiasm, and love).

Not only the size, also the distribution of labels is different in the corpora. Table 2 shows the distribution
for Ekman’s emotions before and after having applied the mapping to a unique set of emotion labels
(see Table 4 in the Appendix A). In many corpora, joy is the dominating emotion, followed by sadness,
surprise, and anger. Exceptions are SSEC, Electoral-Tweets, and EmoInt, in which negative emotions
are more frequent. In SSEC, this is because of its origin as a stance dataset. Similarly, Electoral-Tweets
shows a polarizing nature of political debates with disgust and anger being more common.

Figure 1 shows a quantitative similarity comparison of the data. We represent each dataset by its
term distribution, taking the top 5,000 most common words from each dataset and calculating the cosine
similarity across corpora (inspired by Ruder and Plank (2017) and Plank and Van Noord (2011)). Twitter
corpora are more similar to each other (EmoInt and CrowdFlower are the most similar to TEC) than
to other domains with the exception of SSEC, which is the most dissimilar to the other tweet datasets.
DailyDialogs is more similar to the tweets than to ISEAR and Blogs.

The column All stands for the union of all datasets except the one that is being compared to. In this
context, the most dissimilar towards the respective aggregated set is AffectiveText. The reason is that
this is a small dataset compared to the tweet-based corpora and that it covers a specific topic, headlines.
Grounded-Emotions is also notably dissimilar. Most similar to All is EmoInt, followed closely by TEC
and Blogs, which covers blog posts and not tweets.
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Figure 1: Similarity of corpora with cosine measure. T: tweets, F: tales, P: paragraphs, S: descriptions, H:
headlines, B: blogpost, C: conversations; e: expert annotation, d: distant supervision, c: crowdsourcing.

3.3 Aggregation

To provide a standardized access to the datasets, we define joy, anger, sadness, disgust, fear, trust, surprise,
love, confusion, anticipation and noemo as our common label set. The original resources additionally
include other 44 labels that come from Electoral-Tweets and CrowdFlower. Where availble from the
original publication, we follow proposed mappings (e. g., Electoral-Tweets with 19 emotions and a
mapping to Plutchik’s model). Table 4 in Appendix A summarizes the mapping. We include valence,
arousal, and dominance where annotated, however, we currently do not map the categorical emotion
models onto the dimensional ones.

Each instance in the unified dataset contains, in addition, a unique id, the source corpus name, the text,
and an assignment of a real number to each of the 11 emotion variables. In most datasets, each instance is
only annotated discretely with single labels (exceptions are SSEC and AffectiveText). Therefore, most
instances have exactly one label marked with a 1.0. For the multi-labeled datasets, several emotions can
be marked. For datasets with annotated emotion intensity, values can range between 0 and 1. For datasets
with multiple annotator information, we follow the recommendations by the original authors. For SSEC,
that means, accepting a label if at least one annotator assigned it. For Tales, the authors provide a gold
annotation, in which angry and disgust are merged. We handle them separately, and accept a label if
and only if all annotators agree. For Blogs, we take the examples of the dataset with the high agreement
annotations.

Next to these fundamental attributes, we provide the domain and annotation style information, as well
as additional, dataset specific attributes (e. g., the story from which an instance originates, in the Tales
corpus). Our unified data includes all datasets for which the licenses are available; as some datasets are
not redistributable, but free to download, we provide a script that interactively downloads and converts the
existing resources into our unified format. An excerpt of the data is depicted in Appendix B.



4 Experiments

We perform experiments in the following settings: Firstly, we perform a within-corpus emotion clas-
sification (training on one corpus and testing on the same, using cross-validation5). Secondly, we do
pairwise-corpus evaluation: training on the entire data of one corpus and evaluating on all the data of a
different one, for all corpus pairs. This includes the use of the aggregated corpus, but for this experiment
excluding the test corpus – this corresponds to a cross validation setting in which the subsets correspond
to corpora.

4.1 Experimental settings

Previous methods have shown that linear classifiers are nearly en par with neural methods (Schuff et al.,
2017). We therefore use maximum entropy classifiers as implemented in scikit-learn (Pedregosa et al.,
2011) with bag-of-words (BOW) features for these experiments for simplicity and easy reproducibility.
We use L2 regularization and balance the classes in the training data with instance weights. Training/test
splits are 80%/20%. Cross-validation is 10-folds stratified.

For datasets in which the labels do not align following our mapping, we use the intersection of labels
in the train and test data. We do not discard any instances. For datasets that are designed for other tasks
than emotion classification such as EmoInt and Emotion-Stimulus, we do not change the setting of our
classification task.

For experiments in which we move from a multi-label setting (more than one emotion can hold per
instance) to a single-label setting (only one emotion holds), we train multiple binary classifiers from
which we only accept, in the prediction phase, the highest scoring emotion. For experiments in which we
move from a single-label setting to a multi-label setting, we as well train separate binary classifiers and
accept all emotions for which the binary classifiers output one. The case multi-label to multi-label works
analogously. For single-label to single-label, we use one multi-class MaxEnt model.

4.2 Results

Within-corpus emotion classification. The results for our first experiment are shown per emotion in
Table 3 (where we restrict the results to the six fundamental emotions defined by Ekman) and in the
diagonal of Figure 2. These should be interpreted in context to the similarity analysis in Figure 1. We see
that some datasets and domains are more difficult to be modeled than others. The “easiest” dataset seems
to be Emotion-Stimulus, followed by EmoInt. The reason for the high scores lies in the fact that both
datasets are constructed for different tasks (stimulus and intensity prediction). As such, our task does not
suit these two very well.

Next datasets with comparably high performance measures are Blogs and DailyDialogs. In contrast,
CrowdFlower and Electoral-Tweets seem to be the most challenging in the within-corpus setting. For
CrowdFlower, the results are due to the larger label set, which makes the task more difficult. Mostly, the
emotions that occur less frequently (like surprise) show lower results than the ones occurring frequently
(like joy and sadness). In addition, manual inspection shows that this data is comparably noisy. This is
also backed by the general observation that our model performs in general worse on Twitter data than on
most other domains.

In terms of annotation procedures, these experiments allow almost for no judgement, since most of
the datasets use expert annotation and we only have few examples for the other two ways of annotation
(crowdsourcing and distant supervision) being used. However, we could observe that the crowdsourced
datasets are more difficult which might be due to a more noisy annotation.

Cross-corpus emotion classification The in-corpus results (the diagonal in Figure 2) shows higher
F1-scores than the cross-corpus results. The exception is Electoral-Tweets, where the same performance
is observed by training on a different corpus, Blogs. Models trained on Twitter data perform slightly

5Some datasets came with designated train and test parts, but in order to treat all datasets equal, we chose to ignore that.
However, in the aggregated dataset, the information about which part of the corpus an example is from is preserved in a special
field.



Joy Sadness Fear Anger Disgust Surprise

Dataset P R F P R F P R F P R F P R F P R F

AffectiveText 68 64 66 72 64 68 85 55 67 37 76 50 44 55 49 69 74 71
Blogs 63 70 67 42 32 36 67 43 53 61 31 41 73 51 60 24 28 25
CrowdFlower 42 35 38 26 28 27 32 30 31 21 29 24 6 23 9 9 9 9
DailyDialogs 43 63 51 13 47 20 10 33 16 12 44 18 8 37 13 16 56 24
Electoral-Tweets 37 23 28 23 35 27 26 42 32 36 36 36 52 35 42 15 25 18
EmoInt 94 92 93 83 81 82 85 90 88 90 86 88 0 0 0 0 0 0
Emotion-Stimulus 98 99 98 95 100 97 99 98 98 99 98 98 100 90 95 97 97 97
Grounded-Emotions 61 53 57 41 48 44 0 0 0 0 0 0 0 0 0 0 0 0
ISEAR 61 74 67 73 66 69 69 69 69 45 48 47 58 61 59 0 0 0
SSEC 67 67 67 59 89 71 45 72 55 79 74 76 64 62 63 44 55 49
Tales 34 35 34 24 30 26 27 28 27 28 34 31 16 21 18 19 28 23
TEC 67 69 68 46 44 45 58 56 57 41 40 40 27 26 26 54 50 52

Table 3: Results obtained via 10-fold crossvalidation in precision, recall, and F1 micro-averaged of the
MaxEnt classifier with BOW as features, reported per Ekman’s fundamental emotion. Zeros denote that
the respective class is not annotated in the respective data set. Note that a subset of datasets has more
classes annotated than the provided Ekman’s emotions.

better on other Twitter sets, with an exception of Electoral-Tweets, for which the distribution of labels is
different, with disgust dominating the set.

It is notable that EmoInt, Emotion-Stimulus, Grounded-Emotions ISEAR, and SSEC are easier to
classify (high performance when used for testing) while DailyDialogs, Blogs, CrowdFlower, and Tales are
more informative: training on them and classifying other datasets leads to better results. Models trained
on ISEAR and SSEC perform comparably well. DailyDialogs is classified best not by a classifier trained
on itself, but by a classifier trained on Blogs.

We cannot recommend to train on Emotion-Stimulus and Grounded-Emotions as long as the specific
properties of these datasets are not required. The models estimated on these data do not perform well
on other sets. Note that this is not a quality judgement, Grounded-Emotions has different labels and
Emotion-Stimulus was designed for a different purpose.

Note that the similarity measure is an approximation of mediocre quality for model performance, with
a Pearson correlation of r = 0.32.

All vs. one cross-corpus emotion classification. The results for this setting can be seen in the All
column of Figure 2. These results show which datasets are easier to classify, namely DailyDialogs,
Blogs, and EmoInt. It might seem intuitive that adding more and diverse training data could be helpful in
classifying almost all datasets. However, we can see in the results that this is not the case. Especially the
multi-labeled datasets AffectiveText and SSEC together with the datasets that were the most transformed
(i. e., many labels unified) during the aggregation process, such as Electoral-Tweets and CrowdFlower are
more difficult to classify while training on all the other datasets.

5 Conclusion & Future Work

Datasets annotated for emotion classification are important in emotion analysis research as they are used in
many downstream tasks as well; having these datasets all in place reduces drastically the amount of work
needed in preprocessing and transferring the needed data. Yet, it is a diverse collection of datasets driven
by different psychological emotion models, on different domains, and approaches used in annotation.
With this paper, we present the first survey on emotion datasets on text.

In addition to this literature review, we provide a unified, aggregated corpus to support future research
on standardized data. The existence of such a benchmark opens up the possibility of other experiments,
such as transfer learning and domain adaptation work, with focus on different domains and on different
label sets. From the collected unified datasets one could learn how to select the most suitable dataset
for a given new domain and evaluate it across different classification models, domains, and annotation
procedures, easier than it was possible until now. Also having this open will help the emotion detection
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Figure 2: Results of MaxEnt in F1 measure (micro-averaged) for all cross-corpus experiments. T: tweets,
C: conversations, F: tales, P: paragraphs, S: descriptions, H: headlines, B: blogsposts; e: expert annotation,
d: distant supervision, c: crowdsourcing.

task to become a standard task on which state-of-the-art methods used in general classification are tested
upon, similarly to other tasks like sentiment classification, which plays this role already.

In addition, this work can be used by anyone who wants to explore the current state of the emotion
analysis field. As future work we plan to release another version of the dataset in which the conversion
between the different emotion models are added and to perform transfer learning experiments between
datasets, domains, and annotation procedures. Furthermore, we propose to use the resource to qualitatively
analyze the different realizations of emotions across annotation schemata and domains.

Acknowledgements

This research has been funded by the German Research Council (DFG), project SEAT (Structured Multi-
Domain Emotion Analysis from Text, KL 2869/1-1). We thank Evgeny Kim and Jeremy Barnes for
fruitful discussions.

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017. Emonet: Fine-grained emotion detection with gated recurrent

neural networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 718–728, Vancouver, Canada, July. Association for Computational Linguistics.

Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat. 2005. Emotions from text: Machine learning for text-
based emotion prediction. In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pages 579–586, Vancouver, British Columbia, Canada,
October. Association for Computational Linguistics.



Saima Aman and Stan Szpakowicz. 2007. Identifying expressions of emotion in text. In Václav Matoušek
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A Mapping of Labels to Unified Labels

Unified Label Original Labels

anger anger, angry, annoyance, fury, hostility, ag, hate
anticipation anticipation, vigilence, interest, expectancy
confusion confusion, indecision
disgust disgust, dg, dislike, boredom, hate, disappointment, indifference
fear fear, panic, terror, apprehension, fr, worry
joy joy, happy, happiness, joyful, elation, hp, fun, enthusiasm, relief, serenity, calmness
love love
noemo noemo, neutral, ne, BLANK
sadness sadness, sad, gloominess, grief, sorrow, sd, shame, guilt
surprise surprise, uncertainty, amazement , su+, su−
trust trust, acceptance, admiration, like

Table 4: Mapping of original labels to labels in unified dataset. We roughly follow the models by Plutchik
(2001) and Parrott (2000)

B Example Excerpt from the Aggregated Corpus

{
"id": 210599,
"VAD": {
"valence": null,
"arousal": null,
"dominance": null

},
"source": "ssec",
"text": "He who exalts himself shall be humbled; and he who humbles himself shall

be exalted. Matt 23:12. #SemST"
"emotions": {
"joy": 1,
"anger": 1,
"sadness": 0,
"disgust": 1,
"fear": 0,
"trust": 1,
"surprise": 0,
"love": null,
"noemo": null,
"confusion": null,
"anticipation": 0
},

"original_split": "test",
"emotion_model": "Plutchik"
"domain": "social-media/tweets",
"labeled": "multilabeled"

}

Figure 3: Example excerpt from our aggregated and unified corpus.


