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Abstract—Sentiment analysis and opinion mining are often
addressed as a text classification or entity recognition problem,
involving the detection or classification of aspects and sub-
jective phrases. Many approaches do not model the relation
between aspects and subjective phrases explicitly, implicitly
assuming that a subjective phrase refers to a certain aspect if
they co-occur together in the same sentence, thus potentially
sacrificing accuracy. Instead, in the approach presented in this
paper, we model the relation between aspects and subjective
phrases explicitly, exploiting a flexible model based on impera-
tively defined factor graphs (IDF). The extraction of subjective
phrases, aspects and the relation between them is modeled as
a joint inference problem and compared to a pure pipeline
architecture.

Our goal is to analyse and quantify to what extent a joint
model outperforms a pipeline model in terms of extraction of
aspects, subjective phrases and the relation between them. Our
results show that, while we have a substantial improvement on
predicting targets using a joint inference model, the perfor-
mance on subjective phrase detection and relation extraction
actually decreases only slightly.
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I. INTRODUCTION

Sentiment analysis or opinion mining is the task of
identifying the opinion about specific entities, products or
persons in text. Typical sources considered for sentiment
analysis are Twitter1, reviews from Amazon2 or other more
domain-specific discussion forums. Often, opinion analysis
is approached as a text classification task in which snippets
(like tweets or sentences) are retrieved by occurrence of a
keyword and the surrounding text is then categorized into
being objective or subjective and in the latter case positive,
negative, or neutral [1]–[3]. More valuable and differentiated
results can be obtained by approaches segmenting text into
phrases which denote a specific aspect or an accompanying
subjective expression of some polarity [4]–[10].

Towards a more fine-grained analysis of the opinions
expressed, it seems crucial to capture the relation between

1http://www.twitter.com/
2http://www.amazon.com/

subjective phrases and aspects they refer to explicitly. In
most state-of-the-art approaches, this relation is typically
only implicit, assuming that a subjective phrase refers to
aspects that it co-occurs with within a sentence or some
other unit. This is in general too course and might lead to
low accuracy.
Consider the following example:

At least , the weight of this ugly camera is great .

The sentence mentions two aspects: weight and camera
as well as three subjective expressions, two positive, i. e.
great and At least, and one negative, i. e. ugly. Failing to
capture the explicit relation, i. e. that ugly refers to camera
and great to weight is clearly problematic. This motivates the
need for deeper linguistic analysis, detecting that weight is a
target of great, and camera is a target of ugly. At least might
be considered negative regarding previous text or positive
regarding the current sentence.

Only little work has been performed in extracting sentiment
and opinion-related information in such a fine-grained manner.
Most work in the area of opinion mining has concentrated
on either predicting one of these variables in isolation (e. g.
subjective expressions [6]) or modeling the dependencies
uni-directionally in a pipeline architecture, e. g. predicting
targets on the basis of perfect and complete knowledge
about subjective terms [11]. The relational structure has
been analyzed in detail with multiple types of relations, but
based on the assumption that entities were given [12].

Very recent work analyzed the interdependencies between
targets and aspects, showing that there is a positive impact
of entities in both directions (first predicting subjective
phrases and then targets and the other way round) and a
loss of performance if both entities need to be predicted
instead of having partly perfect knowledge [13]. Similarly, an
inductive logic programming approach combining real-world
predictions of targets and subjective phrases in a joint fashion
has been proposed recently [14]. Here, an optimization
procedure selects suitable entities based on their marginal
probabilities and their relation predicted by a maximum

http://dx.doi.org/10.1109/ICDMW.2013.13
http://www.twitter.com/
http://www.amazon.com/
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Figure 1. Data representation: spans represent the entities of type aspect
and subjective. Subjective spans have an associated list of aspects they are
related to. In case an aspect is described by a subjective phrase we call the
latter a target.

entropy approach. This method could be understood as a
pipeline approach in which an optimization step at the end
selects best fitting combinations of the sub-solutions, which
is closely related to modeling the problem as a joint inference
task.

In order to yield a deeper and more fine-grained analysis
of sentiments, we propose to model the relation between
aspects and subjective phrases explicitly in a flexible system
that relies on joint inference to predict aspects, subjective
phrases and their relations. Our approach builds on factor
graphs as implemented by imperatively defined factor graphs
(IDF), a framework to design probabilistic graphical models
with an arbitrary structure [15], [16]. Next to other inference
algorithms, it includes Metropolis-Hastings sampling [17]–
[19], a Markov-chain-Monte-Carlo method for inference
that allows for handling huge graphical structures [20]–[22].
Thus, we gain the needed flexibility to model the interaction
between different variables. We model targets, i. e., aspects
that are in relation with a subjective phrase, as well as
subjective phrases as span variables and design our joint
model to make predictions about these two variables and their
relation in a single step. This design is beneficial for being
augmented with other classes of interest, such as other entities
or relational structures. This might include conditions under
which some aspect evaluation holds as well as identification
of opinion holders or other variables of interest.

We provide the following contributions in this paper:
• We present a flexible system and framework that allows

to model the relation between subjects and aspects
explicitly, thus allowing for a more fine-grained analysis
of sentiment. The approach is flexible in that other
variables, relations or substructures can be added any
time.

• We study the impact of joint inference in comparison
to a pipeline model, showing that for the prediction
of aspects, the joint inference model outperforms the
pipeline model. In the prediction of subjective phrases
and relations, the pipeline model shows superior perfor-
mance.

In the following, we shortly introduce imperatively defined
factor graphs in Section II-A. We then explain our data
structures in Section II-B and our probabilistic dependencies

in Section II-C. The difference between a joint and a pipeline
model is described in Section II-D. The experimental setting
and results are discussed in Section III. We conclude in
Section IV.

II. METHODS

A. Imperatively Defined Factor Graphs

We exploit factor graphs as a method to define the
probabilistic (undirected) model of the relation between input
text and output variables.

A factor graph [23] is a bipartite graph over factors and
variables. A factor graph G defines a probability distribution
over a set of output variables y conditioned on input
variables x. A factor Ψi computes a scalar value over a subset
of variables xi and yi that are neighbors of Ψi in the graph.
This real-valued function can be defined as the exponential of
an inner product over features {fik(xi,yi)} and parameters
{θik}, where k ∈ [1,Ki] and Ki is the number of parameters
for factor Ψi, and Z(x) is the normalization function. The
probability distribution is therefore

p(y|x) =
1

Z(x)

∏
Ψi∈G

exp

(
Ki∑
k=1

θikfik(xi,yi)

)
. (1)

Defining factor graphs statically for each data point is
not convenient. In addition, generalizations can be made
which limit the dimensionality. Therefore, factor graphs often
share parameters between several factors. A factor template
Tj consists of parameters {θjk}, features {fjk}, and a
description of a relationship between variables, yielding a set
of tuples {(xj ,yj)}. For each of these variable tuples (xi,yi)
that fulfill this relationship, the factor template instantiates a
factor that shares {θjk} and {fjk} with all other instantiations
of Tj . T is the set of factor templates. In this case the
probability distribution is

p(y|x) =
1

Z(x)

∏
Tj∈T

∏
(xi,yi)∈Tj

exp

 Kj∑
k=1

θjkfjk(xi,yi)

.
(2)

Imperatively-defined factor graphs (IDF) are an approach
to probabilistic programming that preserves the declarative
semantics of factor graphs, while leveraging imperative
constructs (pieces of procedural programming) to support
both efficiency and natural intuition in specifying model
structure, inference, and learning. In particular, we exploit the
FACTORIE toolkit (in version 1.0.0-M7) as an implementation
of IDFs. FACTORIE relies on Markov chain Monte Carlo
(MCMC) inference, a common approach for inference in very
large graph structures [20]–[22]. It only requires to represent
a single world at one time by proposing a change to the
current world and accepting that change depending on the
ratio of post- and pre-proposal model scores. Factors that
involve unchanged variables do not need to be (re-)evaluated.



IDF programming consists of four stages: (1) representing
data through variables, (2) designing templates that define the
graphical structure of the network, (3) optionally providing
application-specific hooks for efficient inference, involving
the definition of operations that can be exploited by sample-
based inference to evaluate different world states, (4) reading
in the data, learning parameters, testing, and evaluating. These
steps, for the use case of fine-grained sentiment analysis, i. e.,
the detection of subjective terms, aspects and their relation,
are described in the following sections.

B. Data Representation

Our probabilistic model consists of variables which are
connected via factors, the latter being described in Sec-
tion II-C. The data and variable representation is depicted
in Figure 1. In our model, each token of the input text
constitutes an observed variable. Each sentence is a sequence
of these tokens, and the sequence of sentences form the
whole document. Sentences and documents are considered
variables as well. The representation of entities is similar
to a semi-Markov conditional random field [24]. Aspects
and subjective phrases are modeled as spans of offsets in
the text sequence. In contrast to a linear chain conditional
random field [25], this allows for taking distant dependencies
of unobserved variables into account and simplifies the
design of features measuring characteristics of multi-token
phrases. The relevant variables, i. e., aspect and subjective
phrase, are modeled via complex span variables of the form
s = (l, r, c, ϑ) with a left and right offset l and r, and a class
c ∈ {target, subjective}. These offsets denote the span on
a token sequence t = (t1, . . . , tn). The relation is modeled
as an attribute ϑ of the subjective span variables, which
consists of a list of aspects which are its respective targets
and is a variable itself. This attribute is always empty for
aspect spans. Note that modeling the relation as part of a
subjective entity is motivated by the desire to have a natural
and intuitive data structure. This helps in implementation
of the templates and sampling operations described later. It
does not have disadvantages in comparison to storing separate
relation variables as part of each sentence or document.

C. Templates

As introduced in Section II-A, templates define the sets
of variables that form factors (i. e., the graphical structure
of the probabilistic model), the features that lead to the
factor’s score, and the parameters associated with them. In
FACTORIE, templates are Scala classes implementing unroll
methods to define the connectivity of the graphical model
by returning all factors that the template associates with a
specific variable.

In order to measure the characteristics of aspect and
subjective spans, we incorporate three different templates.
Our single span template defines textual features for each
span in isolation. It defines factors with scores based on

features of the tokens in the span and its vicinity. In our
model, all features are boolean. As token-based features, we
use the POS tag, the lower-case representation of the token as
well as both in combination. The actual span representation
consists of these features prefixed with “I” for all tokens
in the span, with “B” for the token at the beginning of the
span, and with “E” for the token at the end of the span. In
addition, the sequence of POS tags of all tokens in the span
is included as a feature.

The inter span template measures characteristics of each
pair of an aspect and subjective span. It consists of the cross
product of all features from the single span template with
each of the following features (inspired by [11]). Firstly, we
measure if a potential target span contains a noun which
is the closest noun to a subjective expression. Secondly,
we measure for each span if a span of the other class is
contained in the same sentence. A third feature indicates
whether there is only one edge in the dependency graph
between the tokens contained in spans of a different class.
For building the dependency structure, the Stanford parser is
used [26].

The third template is the relation template. In contrast to
the single span and inter span templates, it does not measure
the characteristics of spans to determine their likelihood to
be correct but uses their characteristics to decide whether
an aspect is actually the target of a subjective phrase. The
characteristics measured are the ones mentioned before in
the inter span template, but without being combined with
the textual features (namely, we measure if a target is the
closest noun, if both entities are in the sentence and if the
dependency path has an edge length of one). Therefore, only
grammatical dependencies are taken into account by this
template.

Note that the templates as well as variable and data
description introduced here differ from the description in [13]
as they make the relation extraction implicit. The relational
dependency has been taken into account only to predict the
target span.

We do inference by Markov chain Monte Carlo sampling,
an inference procedure which is deeply integrated in FAC-
TORIE and natural to use with the template’s unroll method
described above. The main difference between a pipeline
architecture and a joint architecture lies on the one hand in the
choice of templates/features as well as in the applied sampling
procedure on the other. In the case of the pipeline architecture,
only plain features that do not model the interaction between
aspects and subjective phrases are used while in the joint
architecture features describing the relation between those
are used. In the case of the joint model, the sampling space
is defined by the possible world changes. Each of these
potential world changes is evaluated by means of templates
and the most probable ones are selected, converging at the
maximum-a-posteriori configuration.
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Figure 2. Three steps of the pipeline model and one step in the joint model. Each step is repeated with the number of training iteration.

D. Sampling strategies for the joint and pipeline models

In the pipeline setting, we follow a three-step procedure.
The first step only deals with subjective spans. For each token,
generating a span, and for each span, removing it as well as
changing its length is proposed. In addition, joining a span
with a succeeding or preceding span is proposed. Finally,
one available state change is to do nothing. As subjective
phrases are predicted first in the pipeline architecture and
thus no aspect entities have been predicted up to that point,
only the single span template features are taken into account
in this first step.

In the second step of the pipeline, the subjective phrases
are kept as they are while the proposals as described before
are repeated for aspect spans. This leads to the introduction
of aspects for the prediction of which the inter span template
features are exploited in addition to the single span template
features.

The third step is the prediction of the relations between
aspects and subjective terms. In contrast to the first two steps
in which the training is performed in the same manner as the
actual prediction3 (but of course not on the same data), the
relation classifier is trained beforehand on spans as they are
in the manually annotated data, i. e., no error propagation can
occur while training the relation classifier. The prediction,
however, is performed on the predicted spans. For relation
detection, we use a simple linear maximum entropy based
classifier.

In contrast to the pipeline model, the joint model attempts
to make multiple decisions at the same sampling step. This
means that the set of proposals made is more complex, while
only one step is performed instead of three. The proposals
are intuitively the same as in the pipeline model, with the
addition that proposing an aspect is done together with adding
it to a subjective phrase as target. An alternative to the joint
relation and entity proposal would have been to propose

3Training is discussed in more detail in Section II-E.

subjective phrases together with relations instead of proposing
aspects with relations. In addition, each span operation is
accompanied by correction of the relational target structure.
In spite of the fact that aspects are introduced together with
a relation to a subjective phrase, the introduced relations can
be removed from the second iteration on. It is thus possible
for aspect entities to exist without being part of a relation.

In detail, the proposals include to keep the world state
as is. In addition, we propose a subjective span and an
aspect span with the latter being proposed as target for each
available subjective span. Thereby, when adding an aspect,
the relation to subjective spans is taken into account. For
each existing span on each token, the operations of removing
the last token or the first token are added. For subjective
spans, joining the span with a succeeding span must be
accompanied by merging the targets and attaching them to
the new span as well as removing them from the original
spans, analogously for the preceding span. Similarly, deleting
a span is accompanied by deleting the target relations, as
it is when the class of the span is changed. Analogously,
changing the class of an aspect span as well as deleting such
a span leads to removing the aspect from all relations in
which it is a target. Similarly, such operations are performed
when joining with a preceding or succeeding span.

A graphical comparison of the pipeline and the joint model
and their use of the templates is depicted in Figure 2.

E. Objective Functions and Training
With the definition of the sampling operations, the space

to be searched for the optimal configuration is well defined.
This sampling/inference strategy is also used for training.
In order to learn the parameters of our model, we apply
SampleRank [27]. This allows to make parameter updates
within inference and hence to speed-up convergence. A
crucial component in the SampleRank framework is the
objective function.

In the pipeline model, the objective function for relation
detection corresponds to accuracy. For span detection, we use



the following objective function f(t) to evaluate a proposed
span t:

f(t) = max
g∈s

o(t,g)

|g|
− α · p(t,g) , (3)

where s is the set of all spans in the gold standard. Further,
the function o calculates the overlap in terms of tokens of
two spans and the function p returns the number of tokens in
t that are not contained in g, i. e., those which are outside the
overlap (both functions taking into account the class of the
span). Thus, the first part of the objective function represents
the fraction of correctly proposed contiguous tokens, while
the second part penalizes a span for containing too many
tokens that are outside the best span. Here, α is a parameter
which controls the penalty.

In the joint model, we use the objective function g(t) (see
below) in order to evaluate a proposed span t. Because of the
structure of the proposals, the relation is taken into account
in addition. A relation (su, ta) between a subjective phrase
and a target is evaluated by

h(su, ta) =

max
(su∗,ta∗)∈rel∗

{
−1 if o(su, su∗) = 0 or o(ta, ta∗) = 0
1
2 (o(su, su∗) + o(ta, ta∗)) else

(4)

The set of all gold relations is denoted with rel∗. Note that
this function is used to evaluate the proposal of relations.
To be able to prefer to not include a relation, −1 is the
objective score for wrong relation proposals. The evaluation
of the relations is performed jointly with the evaluation of
the spans. A span t is evaluated by

g(t) = βf(t) +
∑

(su,ta)∈rel(t)

h(su, ta) (5)

Here, rel(t) is a function returning the set of all relations
as (su, ar) pair in which the span is a target (if the span is an
aspect) or in which it participates as subjective phrase. The
parameter β specifies the weight of the relation evaluation
in comparison to the span evaluation itself. We empirically
set it to β = 0.1, i. e., we favor correctly extracted relations
over correctly extracted spans in our evaluation scheme.

Table I
STATISTICS OF THE DATA SETS.

Car Camera

Texts 457 178
Aspects 50287 17585
Subjectives 15056 5128
Relations 13466 5005

III. EXPERIMENTS & RESULTS

A. Experimental Setting

We report results on the J.D. Power and Associates
Sentiment Corpora4, an annotated data set of blog posts in the
car and in the camera domain [28]. From the rich annotation
set, we use subjective terms and entity mentions as aspects.
We do not consider comitter, negator, neutralizer,
comparison, opo, or descriptor annotations to be
subjective expressions. The relations annotated with subjec-
tive expressions are used to train our model to express which
aspects take the role of targets.

A short summary of the datasets is given in Table I. The
average number of subjective phrases per text is 33 in the car
and 98 in the camera corpus. The average number of relations
is 29.5 and 28.1, respectively. The maximal number of an
entity participating in a relation is 17 for aspects referring to
subjective phrases. Such extreme cases occur when positive
or negative aspects are enumerated. In the case in which
7 subjective phrases refer to one single aspect, the car is
described with different adjectives such as reliable, cheap,
practical, fun, large, comfortable, powerful.

As evaluation metric, we use the F1 measure, the harmonic
mean between precision and recall. True positive spans are
evaluated in a perfect match and approximate match mode,
where the latter regards a span as positive if one token within
it is included in a corresponding span in the gold standard. In
this case, other predicted spans matching the same gold span
do not count as false positives. The relations are evaluated
similarly: A prediction is regarded as a true positive if the
gold standard contains a relation in which target as well
as subjective phrase is fully and exactly the same as in
the prediction. In the approximate mode, a true positive
TP(su, ta) of a subjective-phrase-target-phrase pair is 1 if
and only if there exists a correct (gold) relation (su∗, ta∗)
and o(su, su∗) > 0 and o(ta, ta∗) > 0.

We compare the pipeline model to the joint model on both
data sets via 10-fold cross validation: We train on 8 subsets,
use one for test and one for validation to select the iteration
with the best result to be reported on the test set.

B. Results and Discussion

Figure 3 show the results for both the joint and the pipeline
setting for cars and cameras. The darker bars correspond to
perfect match, the lighter ones to the increase when taking
partial matches into account. Table II shows the results in
more detail. In addition, a “Relation Only” setting is presented
which contains the results of a relation extractor trained and
evaluated on the gold annotations of aspect and subjective
spans.

The results show that it is not the case that one model
outperforms the other on all subtasks (aspect recognition,
subjective phrase recognition as well as relation detection).

4http://verbs.colorado.edu/jdpacorpus/

http://verbs.colorado.edu/jdpacorpus/
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Figure 3. Results of the pipeline and the joint model for the camera data set and the car data set.

Table II
RESULTS FOR THE JOINT AND THE PIPELINE MODEL ON THE CAR AND THE CAMERA DATA SETS. NUMBERS ARE IN %.

Exact Partial Exact Partial

Aspect Subjective Aspect Subjective Relation Relation

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Camera Joint 55.0 60.0 57.4 54.2 46.6 50.0 83.8 81.6 82.7 60.8 52.2 56.1 24.9 10.0 14.1 34.6 14.1 19.8
Camera Pipeline 46.7 35.1 40.0 66.0 46.7 54.7 82.3 50.0 62.1 72.1 50.8 59.6 32.0 16.2 21.5 44.3 22.5 29.8
Camera Relation Only 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 63.1 50.1 55.7 66.6 52.9 58.9
Car Joint 55.8 58.9 57.3 57.5 49.6 53.1 78.8 78.8 78.8 63.7 54.9 58.9 25.2 11.9 16.1 32.3 15.4 20.8
Car Pipeline 52.7 32.8 40.4 71.3 48.6 57.8 77.9 43.7 55.9 76.0 51.8 61.5 36.6 21.0 26.6 46.7 26.8 34.0
Car Relation Only 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 64.0 53.2 58.1 66.3 55.1 60.2

While the pipeline approach clearly outperforms the joint
architecture on the extraction of relations (21.5 exact F1

for camera, 26.6 exact F1 for cars in contrast to 14.1 F1

and 16.1 F1) and slightly for subjective phrases (54.7 F1

and 57.8 F1 vs. 50.0 F1 and 53.1 F1), the joint architecture
achieves higher results on the task of recognizing aspects
(with 57.4 F1 and 57.3 F1 for camera and car over 40.0 F1

and 40.4 F1).
The number of entities not participating in a relation is

much higher for the aspects, with 0.76 % (38464) for the
car data set and 0.75 % (13145) for the camera data set in
contrast to subjective phrases with 0.18 % (2703) for cars
and 0.10 % (528) for cameras. This situation complicates the
joint extraction, as the model needs to learn what makes an
aspect not only based on the relation to the subjective phrase
but in addition by means of pure textual features.

Taking joint features into account has a huge impact on
aspect detection, with an increase of 16.9 percentage points
for exact prediction on the car data and 17.4 percentage
points on the camera data (20.6 and 22.9 percentage points
for partial detection respectively) compared to the pipeline
architecture. While the performance of the joint architecture
is lower on the subjectivity recognition task compared to
the pipeline model, the decrease in performance is relatively
modest, amounting to a decrease by only 4.7 percentage
points for both car data camera data (with partial match 2.6
percentage points and 3.5 percentage points, respectively).
On the car data set, the difference in performance for exact
relation detection is 10.5 percentage points for car data and
7.4 percentage points for the camera data.

Limiting the task to the detection of relations of per-
fectly known entity classes (a setting which is common in

several shared tasks, e. g. in the BioCreative competitions
for detecting protein-protein interactions [29]), the linear
classifier reaches 55.7 and 58.1 F1 for the camera and the
car domain, respectively. If we take into account partially
detected relations (as described above in Section III-A), we
reach F-measures of 58.3% and 60.2%, respectively.

This performance might lead to the assumption that
the relation extraction component of the system might be
too limited to actually contribute to the whole system’s
performance. Another aspect is that especially the recall
is limited in the setting where entities are predicted (e. g.
the joint car model leads to 32.3 precision but only 15.4
recall). This is a typical issue for tasks which rely on previous
prediction, as it is the case for relation detection on predicted
entities. The observation of this characteristic in our joint
model might support the assumption that the joint inference
cannot fully eliminate error propagation issues in this setting.

Another aspect of the difference of the two approaches
is the runtime of the system. The most important aspect of
runtime is the number of proposals made in each sampling
iteration, as each proposal needs two evaluations of the
objective functions and of the model score to decide if the
proposal is accepted or not: one to determine the current
score and one for the proposed world state. The number
of proposals for the joint approach is (on average) 4.92
per token, leading to 5476947 evaluations of the objective
function in the whole training (with 15 training iterations).
For the step of predicting subjective phrases, 2.26 proposals
are made per token and 2.9 for the step of predicting aspects.
This leads to 4905114 evaluations of the objective function
altogether, being in the same order of magnitude.



IV. CONCLUSION AND FUTURE WORK

We have presented a joint inference model that supports
fine-grained sentiment analysis by modeling the relation be-
tween aspects and subjective phrases explicitly and modeling
the statistical interaction and dependence between targets
and subjective phrases. We have compared our approach to
a pipeline model in which first subjective and then aspects
are detected. While our joint model outperforms the pipeline
model on the prediction of aspects, it performs slightly worse
on the prediction of subjective phrases and clearly worse on
the relation detection.

We believe the results are nevertheless interesting as they
provide a novel approach to joint modeling in the context of
sentiment analysis. Further, a clear benefit of our approach is
that it is flexible and can be straightforwardly extended with
other variables. We believe that including further subtasks
might reveal the actual impact of a joint modeling approach
in a clearer fashion.

The results for the joint model suggest that, in addition to
the proposed model, other structures of such joint inference
should be investigated. It is straight-forward to use the
pipeline model, but include a joint step at the end. Similarly,
pre-training of components for the joint model might have a
positive impact as well. An avenue for future work would
thus be to combine the advantages of both the pipeline and
joint modeling approaches in one architecture.

Finally, it should be noted that the results, especially of the
relation extraction can be shown to improve substantially with
more informative features. We verified this by inclusion of an
oracle variable which mirrors the real truth (according to the
gold standard) of a prediction. This setting proves that the
configuration actually is meaningful. However, future work
includes the improvement of the relation detection features.
In addition, understanding why the joint model performs
well for certain tasks compared to the pipeline model while
not for others is an important issue.
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