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Abstract

Social media data is notoriously noisy and unclean. Recipe collections and their manual categorization built by users are no
exception. However, a consistent and transparent categorization is vital to users who search for a specific entry. Similarly, curators
are faced with the same challenge given a large collection of existing recipes: They first need to understand the data to be able to
build a clean system of categories. This paper presents an empirical study using machine learning classifiers (logistic regression
and decision trees) for the automatic classification of recipes on the German cooking website Chefkoch.de. The central question
we aim at answering is: Which information is necessary to perform well at this task? In particular, we compare features extracted
from the free text instructions of the recipe to those taken from the list of ingredients. On a sample of 5,000 recipes with 87 classes,
our feature analysis shows that a combination of nouns from the textual description of the recipe with ingredient features performs
best in the logistic regression model (48 % F;). Nouns alone achieve 45 % F; and ingredients alone 46 % F,. However, other word
classes do not complement the information from nouns. Decision trees constantly underperform the logistic regression, however,
lead to an interpretable model. On a bigger training set of 50,000 instances, the best configuration shows an improvement to 57 %
highlighting the importance of a sizeable data set. In addition, we report on the use of these feature vectors for similarity search and
ranking of recipes and evaluate on the task of (near) duplicate detection. We show that our method can reduce the manual curation
with precision@3 = 0.52.

Keywords: recipe, cooking, food, classification, multi-label, text mining, similarity search

1. Introduction the full range and structure of the category system. Thus, each
new recipe may introduce additional noise into the database.
Therefore, contributors as well as database curators would ben-
efit from automatic support in choosing appropriate categories
for a recipe.

Similarly, a contributor might not be able to find a specific
recipe and therefore opt for adding it, though it might exist al-
ready. This includes additional noise. A method for discovering
potentially similar or even equivalent recipes can help in keep-
ing the number of near duplicates low and, on the query side,
help in finding variations of a recipe.

We address both tasks in this paper. For the categorization
part, we estimate a statistical model of category assignments
based on recipes in the Chefkoch.de database. This model will
be beneficial for database completion, adjustment, and consol-
idation of existing recipes and will help users and curators by
suggesting categories for a new recipe. Our main contributions
are experiments to investigate the performance of the model:
(1) We compare logistic regression and decision tree classifica-
tion models taking into account different types of information

"http://www.chefkoch.de (all URLs in this paper: last accessed on from the ingredient hSt_and, textual fieSCI'ip tion. I,n particular,
2017-01-31.) we make use of ontological information to generalize over spe-

In 2012, 63.7 % of Germans used the Internet as source
of inspiration for cooking [17]]. One popular cooking website
is Chefkoch.dﬂ where every user can contribute to a shared
database of recipes and discussions. The result of this social
network approach is a large data set of diverse and potentially
noisy information.

Commonly, a recipe consists of at least three major parts,
exemplified in Figure[I} the list of ingredients, whose entries
consist of an ingredient type, an amount, and a unit; the cook-
ing instructions wherein the steps for preparing the dish using
the ingredients is described in natural language; and meta data
which supplies for instance information about the preparation
time and difficulty. Each recipe is assigned to a number of
categories, for instance of subtypes regional (e.g., Germany,
Malta, USA and Canada), seasonal (e.g., Christmas, spring,
winter), or course (e.g., vegetables, pork, dessert) (seehttp://
www . chefkoch.de/rezepte/kategorien/). When submit-
ting new recipes, both users and curators may not understand
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Potato soup

Ingredients:
Depiction
e 800g potatoes

e 1| vegetable stock

e salt & pepper
Working time: 20min / difficulty: simple / calories: not specified

Cooking instructions:

Peel the potatoes and cut them into pieces. Cook the potatoes in the vegetable
stock until they are soft. Stir the soup with a wooden spoon, mashing the
potatoes. Season the soup with salt and pepper.

Figure 1: Example recipe.

cific ingredients and we investigate different subtypes of word
classes. (2) Our evaluation of different feature sets shows that
nouns are more important than verbs and the order of ingredi-
ents in the list is only of limited importance for classification.
(3) We provide a visualization of the recipes with using dimen-
sionality reduction to contribute to a better understanding of
the data. This also highlights which subset of categories are
specifically challenging. We work with German data which is
characterized by rich morphology, e.g., regarding the variety of
plural forms and compounds. However, we do not incorporate
any specific handling of German.

To discover similar recipes, potentially duplicates, but also
variations of recipes, we propose to use the feature vectors built
for the classification task in an unsupervised retrieval setting.
We evaluate this method on (near) duplicate detection.

2. Related Work

2.1. Recipe as Subject of Research

Recipes have been the subject of several previous studies.
We focus on text-oriented research here (as opposed to for ex-
ample the classification of image data [1]). Most related to
this paper is prior work on recipe classification by Su et al.
[30]]. They analyzed the correlation between recipe cuisines and
ingredients for recipes from Food.com (http://food.com).
They trained support vector machines to predict a single cui-
sine, using ingredients as features. Overall, they achieved a
precision and recall of about 75%.

Naik and Polamreddi [22] performed classification with dif-
ferent models and principle component analysis on Epicurious

(http://epicurious.com)and Menupan (http://menupan.

com) and reached 75 % accuracy. Recent work by Hendrickx
et al. [10] predicted wine features from reviews. Min et al. used
deep neural networks to learn joint representations of images
and ingredients [18]. One of their goals was to classify recipes
by cuisine.

Oberlaender and Bostan opted for modelling a recipe in a
distributional manner in contrast to using ontologies [24]. Each
ingredient was represented as a dense vector, a combination of
these vectors represents a full recipe which they used with a

long short-term memory neural network (LSTM) to generate
recipes.

Wang and Li [33] developed a system to teach cooking,
which includes pointing out potential problems that may arise
while preparing a dish and offering solutions, based on action
or flow graph structures [[15}34] and predicate-argument struc-
tures [[12,1201[19]. Based on such graph structures, the similarity
as well as specific characteristics of recipes can be calculated
[38].

In contrast to the work presented above, we perform multi-
class classification while the dominant approach appears to deal
only with single-class associations. Our set of classes goes be-
yond pure cuisine and includes information such as preparation
method and course. Lastly, we take into consideration more in-
formation about ingredients (like amount and unit type) and the
cooking instructions.

2.2. German Recipes in Focus

There is little prior work on German recipe data. Wiegand
et al. [36L 35]] analyze on Chefkoch.de whether a food item
can be substituted by another, whether it suits a specific event,
and whether it is mentioned as an ingredient of a specific dish.
Reiplinger et al. [27] applied distant supervision for the estima-
tion of relation extraction models. Donalies analyzed the use of
intentions of language use to name recipes in German [J5]].

To our knowledge, the work presented here is the first to
address multi-class classification of German recipes.

2.3. Domain Knowledge from Ontologies

Next to the automatic analysis of recipe data, previous work
attempted to build formal representations of recipes as ontolo-
gies. Xie et al. [37] state that such domain knowledge is a
prerequisite to model the semantics of a recipe correctly. The
cooking ontology [23] is such a formalization, specializing in
ingredients, condiments, kitchen tools, and movements while
cooking and contains lexical variants in Japanese. Other food-
related ontologies are for instance the BBC Food Ontology (http:
//www.bbc.co.uk/ontologies/fo) and the LOV Food On-
tology (http://lov.okfn.org/dataset/lov/vocabs/food).
In this paper, we will make use of WikiTaaable [3| 28]. It con-
tains lexical variants for English, French, German, and Spanish
and includes a recipe and an ingredient ontology (2875 food
items, 540 in German), among other parts. The ontology rep-
resents food items hierarchically, and contains their nutritional
values and compatibility with dietary restrictions.

2.4. Ingredients as a Core Feature of Recipes

Previous studies have already figured out that ingredients
reveal important information about a recipe. Chung et al. esti-
mated the relatedness of an ingredient to a recipe category us-
ing frequency measures, working on recipes from the Japanese
recipe platform Rakuten (http://recipe.rakuten.co. jp)
[2]. Ozaki et al. [25] extracted characteristic ingredients by
cuisine type for recipes from Cookpad (https://cookpad.
com/). They also take cooking actions into consideration. This
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is similar to our analysis of ingredients and recipe classes using
pointwise mutual information.

In experiments on Allrecipes (http://allrecipes. com),
Kim et al. [13]] found that rare ingredients are more important to
characterize a recipe. They employed entropy-based measures
to set up a similarity network and clustered to group by cuisine.
Similarly, Ghewari et al. predicted the geographical origin of
recipes on Yummly (http://www.yummly . com) with 78 % ac-
curacy using ingredient information [7]]. Similarly to our work,
they ranked features for each cuisine by pointwise mutual in-
formation.

To automatically extract relationships between ingredients,
Gaillard et al. [6] developed an interactive adaptation knowl-
edge model to substitute ingredients of a given recipe. They
extract ingredient choices in recipes (e.g., “S00g butter or mar-
garine”) from the WikiTaaable recipe ontology as their knowl-
edge base. Mota et al. extend this approach by using a food
ontology [21]]. Sidochi et al. extract substitutes in recipes from
Ajinomoto (http://park.ajinomoto.co. jp) by taking into
account process information [29]. Teng et al. [32] consider
ingredients replaceable when they regularly co-occur with the
same ingredients in other recipes from Allrecipes.

Aiming at understanding the internal structure of recipes,
Greene [8]], Greene and McKaig [9] segment each entry of the
ingredients list in recipes from a database of the New York
Times into name, unit, quantity, comment, and other using se-
quential prediction with linear-chain conditional random fields.
Similarly, Jonsson [11]] split textual descriptions from Allrecipes
into ingredient, tool, action, intermediate product, amount, unit
and other and detect relations between these classes.

In this paper, we combine information extracted from mul-
tiple parts of the recipe as well as from external sources such
as the ingredient ontology introduced above. To this end, we
design features for multi-label classification and for the estima-
tion of recipe similarity, which are in part inspired by the work
summarized above. We discuss the features in the following
section.

3. Models and Feature Sets

We frame the task of automatically categorizing a recipe as
a multi-label classification problem. Each recipe is represented
as a high-dimensional feature vector which is the input for mul-
tiple binary prediction models, one for each category. The out-
put of each model corresponds to an estimate of the probability
of the recipe being associated with this category. Throughout
this paper, we report our results with binary logistic regression
models [4]. Furthermore, we also briefly discuss results for
decision trees [26] which were outperformed by logistic regres-
sion models in all configurations using more than one feature
type. Our main experiments use logistic regression, a state-of-
the-art classifier which can deal with correlations of features.
However, these correlations can make it hard to interpret the
values of the resulting models. Decision trees therefore com-
plement our analysis as interpretable models, which enable an
analysis though they are outperformed by the logistic regres-

sion. The inputs to each of these models are different feature
sets and their combinations described below.

From the cooking instructions, we extract bag-of-words fea-
tures without changing case from the textual description (abbre-
viated as worbs) as a baseline (changing case does not lead to
performance differences). In the example recipe in Figure
these are all words from the cooking instructions (e.g., “Peel”,
“the”, “potatoes”). To investigate which word classes are rele-
vant, we use the subsets of VERBs (e.g., “Peel”, “cut”) and NOUNS
(e.g., “potatoes”, “pieces”, “spoon”’). We perform POS tagging
with the Stanford Core NLP [[16] with the German model.

Based on the ingredient list, we use a variety of features,
with the bag of INGREDIENTS (“‘potatoes”, “vegetable stock™, “salt
& pepper”) being the most fundamental one. We introduce
generalization by expanding this feature to INGREDIENT CLASSES
(1c), adding all parents as defined in the WikiTaaable ontology
(adding vegetable for potato). We encode the order of the list
through INGREDIENT RANKS features for the first and second posi-
tion in the list (IR, e.g., potatoes @ I and vegetable-stock@?2).

The feature set unit TYPE (UT) adds binary features for each
combination of ingredient and unit (potatoes-weight_unit, veg-
etable_stock-volume_unit) as an approximation for ingredient
amounts. As a motivating example, if flour is specified in kilo-
grams, it is likely to be used to create dough for baking. In
contrast, an amount given in table spoons could indicate its use
in soup. We restrict this feature to mg, g, kg, ml, cl, dl, 1, and
spoons, tea-, table spoon, level or heaped.

Similarly to the ingredient rank feature, we assume the in-
gredient with the highest amount (HIGH. A. INGR., HAI) to be im-
portant. Note that this feature requires unit normalization. We
normalize amounts of the same type (e.g. kg, g and mg) to the
same unit and approximately convert units of different type by
using the conversion values of water (e.g. lkg corresponds to

11). In the example in Figure[T] the feature vegetable-stock_highest-

amount holds. The template INGREDIENT NUMBER generates a bi-
nary feature for each possible count. We expect it to be of value
for low counts which occur more frequently (in the example,
the feature 3-ingredients holds).

All features above consider information from the recipe text
or from the ingredient list independently. To combine informa-
tion from both sources, we introduce the feature sets CONTEXT
WORDS (CW), CONTEXT VERBS (CV), and CONTEXT NOUNS (cN). For
each ingredient in the list, all occurrences in the recipe text are
detected. All combinations of each word, verb, or noun, re-
spectively, with the ingredient in the same sentence form an-
other feature. For instance for verbs, the first sentence of our
example yields features “peel-potato” and ““cut-potato”.

The only feature we extract from the meta-data iS PREPARA-
TION TIME (PT) which we represent through stacked bins (in the
example, Preparation > 5min and Preparation>15min hold).
We sum preparation time, cooking or baking time, and resting
time.

Ingredient Detection. In order to extract the CONTEXT WORDS,
CONTEXT VERBS and CONTEXT NOUNS features, occurrences of in-
gredients in the cooking instructions need to be detected. We
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address this issue with a simple rule-based approach with two
steps.

In the first step, we perform a term expansion for each ingre-
dient from the ingredient list by separating the main component
and additional information (e.g., “Cheese (Emmental)” is sep-
arated into “Cheese” and “Emmental”) and expanding plural
brackets into the singular and plural version of the ingredient
(e.g., “Egg(s)” is expanded to “Egg”, “Eggs”). We then sub-
stitute all terms that are covered by the WikiTaaable ontology
with each governing superclass. As an example, for the ingre-
dient “Apple(s), Braeburn” we would get “Apple”, “Apples”,
“Braeburn”, “Fruit”, “Pomme Fruit”.

In the second step, for each of the terms we search for a
match among all tokens from the instructions. To cover special
cases of ingredient usage, we apply a set of matching rules, in-
cluding compound splitting (as compound parts are not delim-
ited by spaces in German) and resolution of hanging hyphens
(e.g. “apple- and cherry juicy” matches “apple juice®).

To measure the performance of ingredient detection, we
evaluate the process on 100 randomly chosen cooking instruc-
tions which we annotated manually for ingredient occurrences.
We obtain a macro-averaged precision of 86% and a macro-
averaged recall of 76% which leads to a macro Fl-score of
81%. In 9 out of the 100 recipes, all ingredient occurrences
were detected correctly.

4. Results

4.1. Experimental Setup for Classification

We use a database dump of 263,854 Chefkoch.de recipes
from June 2016. The minimum number of ingredients in any
recipe is 1, the maximum 61, the average is 9.98. The overall
number of unique ingredients is 3,954. The number of recipes
varies across categories (on average 7,825.3, however, the me-
dian is only 1,592). The categories on Chefkoch.de are struc-
tured hierarchically with up to four levels. Within this hierar-
chy, recipes associated with any leaf node are assumed to also
belong to all parent categories on the path to the root. Thus, we
need to predict only association of a recipe to the leaves of the
hierarchy. This means that we use “flat classifiers”, in contrast
to a global approach which takes into account the whole hierar-
chy in the model (“big-bang”) or local classification decisions
(“top-down”) [31].

This leads to a total of 182 categories, out of which 162
are leaves. There are 7 nodes on the top level (10,43 children
on average), 73 nodes on the second level (1,38 children on
average), 101 nodes on the third level (0,01 children on average)
and one node on the forth level. The leaf nodes are not all in the
same height but spread over the second (61 leaves), third (100
leaves) and fourth level (1 leaf).

An excerpt of the hierarchy is shown in Figure[2] The mini-
mum number of categories assignment to a recipe is 0, the max-
imum 36, the mean is 4.8. The category with the fewest recipes
is “Malta”, which contains 30 entries. “Baking” is the largest
category, containing 67,492 recipes.

For the classification experiments and evaluation, we use a
random sample of 20 % (52,771) of the recipes as our test set.
As our main goal of this paper is to develop a model which
is suitable for database consolidation, we omit all categories
which occur fewer than 500 times in this test set (= 1 %). After
this sampling step, 87 categories remain in the dataset which we
use in our experimentsE] Note that this step does not omit any
recipes due to the multi-label classification setting. The logistic
regression models use L, regularization and a stopping criterion
of £ = 1.0. We train the decision trees with a minimum of two
recipes in a leaf node and pruned with a confidence factor of
0.5.

As feature vectors grow rapidly for some feature types, es-
pecially the feature types extracted from the cooking instruc-
tions, the working memory of the available computers were not
sufficient to train these models on all available data. Figure
shows how feature vectors grow with the increasing number of
recipes read from the training set. Therefore, we first compare
the results of different feature sets using a training set of 5,000
randomly selected instances. Among these variations, we de-
termine the best model configuration through evaluation on the
development set. We then train this model on a larger set of
50,000 instances. Test results in the paper are reported on a test
set of 5,000 instances for all models.

4.2. Classification Results

In the following, we will first discuss the differences be-
tween feature sets in detail under consideration of the classifi-
cation method (Section .2.T). Further, we provide an analysis
of high-level categories (Section f.2.2) and a visualization of
the data (Section[4.3). In addition we perform a more in depth
feature analysis (Section 4.4) and error analysis (Section [4.3).
Finally, we add an additional experiment in which we perform
similarity search based on the feature-based respresentation of
the recipes (Section [4.6).

4.2.1. Comparison of Feature Sets

Table [T] shows macro-averaged F; over all categories (we
do not report accuracy values due to the unbalancedness of the
data) with different feature sets for decision trees and logistic
regression classifiers. In the following, we focus our discussion
on the logistic regression models.

Considering only information from the instruction text, we
find that the model using all worps yields 46 % F;. Using only
NouNs performs comparably well, albeit at a loss of precision
compensated for by higher recall. In contrast, VErBS in isola-
tion lead to a drop by 14 percentage points. Information about
entities involved in the preparation process is much more im-
portant than information about activities.

The INGREDIENTS feature alone yields an F; of 43 %, which is
comparable to the instructions-based results above. Most other
features in this group (ic, IR, HAL, UT) perform relatively poor.

2Listed at
recipe-categorization

http://www.ims.uni-stuttgart.de/data/
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Figure 2: Excerpt of the label hierarchy at Chefkoch.de. The complete hierarchy is available at https://www.chefkoch.de/rezepte/kategorien/.
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Logistic Regression  Decision Trees

Feature combination Features P R F P R F,
woRDs (Baseline) 19,942 63 36 46 50 30 38
NOUNS 11,176 58 37 45 52 33 40
VERBS 3,580 46 25 32 40 22 28
INGREDIENTS 1,448 58 34 43 52 34 41
INGR. CLASSES (IC) 61 23 19 21 52 19 27
INGR. RANKS (IR) 1,302 42 21 28 58 21 30
HIGH. A. INGR. (HAI) 633 14 24 18 62 15 24
UNIT TYPE (UT) 1,548 24 30 27 53 25 34
INGR. NUMBER (IN) 32 10 0 0 41 0 0
PREP. TIME (PT) 9 3 2 5 0O O 0

CONTEXT WORDS (cw) 194,042 41 25 31 40 24 30
CONTEXT NOUNS (CN) 71,311 39 24 30 45 23 30
CONTEXT VERBS (CV) 41,269 29 24 26 41 19 26

INGR & IC 1,509 60 34 44 52 34 41
INGR & IR 2,750 58 35 44 52 33 40
INGR & UT 2996 56 35 43 52 33 40
INGR & HAI 2,081 58 35 44 52 33 41
INGR & WORDS 21,390 64 39 48 53 33 40
INGR & NOUNS 12,624 61 40 48 53 35 42
INGR & VERBS 5,028 58 38 46 52 34 41
INGR & CW 195,490 63 27 38 42 27 32
INGR & CN 72,759 62 29 39 48 27 34
INGR & CV 42717 60 29 39 47 26 33
INGR & 1€ & IR 2,813 58 36 44 52 33 40
INGR & IR & HAI 3,391 58 36 45 52 32 40

INGR & IC & IR & HAI 3,452 58 37 45 52 33 40

Table 1: Precision, recall and F1 measures in percent for recipe classification with 5,000 training instances and different feature combinations for logistic regression
models and decision trees. The best results in each column for each feature group are highlighted in bold.
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Figure 3: Feature vector growth dependent on the number of read recipes. Note the logarithmic scale of the axes.

IN and PREPARATION TIME provides no useful signal. Using con-
TEXT WORDS, CONTEXT NOUNS, and CONTEXT VERBS instead of their
standalone counterparts leads to losses of up to 15 percentage
points. We suspect that the main reason is sparsity due to large
feature set sizes.

First, note that any combination of the INGREDIENTs feature
with other features based either on the instructions or the list of
ingredients yields an improvement. Conversely, combinations
with the CONTEXT WORDS, CONTEXT NOUNS, and CONTEXT VERBS
lead to drops, which is another indicator for sparsity — the con-
TEXT WORDS features vastly outnumber the INGREDIENTS features.

Combinations of more than two feature sets do not lead to
further improvements. Our overall best model makes use of
INGREDIENTS and NouNs, performing at 48 % F;. In order to de-
termine whether performance improves with the availability of
a larger training set, we re-run the experiment for this setting
with a sample of 50,000 training instances. We find a consid-
erable improvement in precision (67 %), recall (49 %), and F;
(57 %).

Turning to decision trees, we find similar patterns for the
different features results as we did for the logistic regression
models: INGR. NUMBER and PREP. TIME provide no useful signals,
WORDS, NOUNs and VERBs perform better than CONTEXT WORDS,
CONTEXT NOUNS and coNTEXT VERBS. This holds both in the single
feature condition and in combination with the INGREDIENTS fea-

ture. Combinations of more than two feature do not lead to any
improvement anymore.

In direct comparison, we see that logistic regression models
outperform decision trees for all conditions with combined fea-
tures (lower section of the table). However, for the single fea-
tures INGREDIENT CLASSES, INGREDIENT RANKS, HIGH. A. INGR. and
UNIT TYPE the decision trees reveal better results, for INGREDIENT
NUMBER, CONTEXT NOUNS and CONTEXT VERBS the F| scores are on
par in the majority of cases.

Unlike logistic regression models, decision trees can be eas-
ily visualized, as they consist of a set of rules over features of
the instance to be classified. Figure[d]shows part of the decision
tree model for the category “baking”, trained with the INGREDI-
ENTS feature.

4.2.2. Comparison of Categories

The comparison of macro-F; estimates above provides only
a coarse analysis as it summarizes over a total of 87 categories.
As we are unable to provide a full results listing due to space
constraints, we highlight those categories where our logistic re-
gression model performs best and worst, respectively, in Ta-
ble 2] For this comparison, we make use of the results using
the training set of size 50,000 introduced above. This analysis
is based on the best-performing model, INGREDIENTS and NOUNS.

The category for which our model performs best is “baking”



Top Category P R F
Backen (baking) 89 88 88
Pasta & Nudel (pasta) 88 &7 87
Kuchen (cake) 8 85 85
Brot/Brotchen (bread) 87 78 82
Kekse & Plitzchen (cookies) 86 78 82
Fisch (fish) 84 76 80
Rind (beef) 81 78 80
Torten 82 73 77
Vegetarisch (vegetarian) 77 76 76
Dessert (dessert) 80 71 175
Bottom Category P R F
Kalorienarm (low-calorie) 36 11 17
Resteverwertung (leftover meals) 36 11 17
Diinsten (steaming) 32 10 15
Studentenkiiche (students’ cuisine) 35 10 15
Camping (camping) 33 9 14
Spezial (Special) 22 10 14
Beilage (side dish) 28 8 13
Frankreich (France) 32 6 11
Raffiniert & preiswert (clever & cheap) 22 4 7
Geheimrezepte (secret recipes) 09 01 2

Table 2: The 10 best (top) and 10 worst (bottom) categories with INGREDIENTs and NouNs feature combination.

with an F; measure of 88 %. A large amount of the remain-
ing top 10 categories are defined by certain ingredients (hence-
forth defining ingredients) of the dish, such as “pasta”, “beef”,
or “fish”. In contrast, the 10 categories where performance is
worst mostly center around abstract ideas or processes. For in-
stance, the most difficult category is “secret recipes” with only
2%F,. This and other categories such as “cheap & clever”,
“camping”, or “students’ cuisine” require world knowledge be-
yond what can be learned from the recipes alone. Overall,
among the 87 categories considered in this experiment, 41 cat-
egories have an F; above 50 %. The remaining 46 categories
score lower. Table [3|reports the mean results for leaves in spe-
cific subtrees in the hierarchy. The model performs best for
leaves under the inner node “baking & desserts” — which is the
largest category by recipe count — with an F; of 79 %. Next is
“course” with 65 % F;. “regional” (22 % F) is the most chal-
lenging category, followed by “special” (42 % F).

Overall, we find that there are certain types of categories, in
particular those that have defining ingredients, where our model
performs particularly well. This results suggest that more com-
plex features may be necessary in order to fully capture more
abstract ideas such as the purpose or cultural origin of a dish.

4.3. Visualization
One hypothesis as to why some categories are more diffi-
cult to predict than others is that the conceptual definition and

Category Class Prec. Rec. F1
Backen & Siifispeisen

(Baking & Desserts) 83 75 79
Menart (Course) 71 60 65
Zubereitungsarten

(Preparation Methods) 68 53 60
Saisonal (Seasonal) 57 34 43
Spezielles (Special) 58 33 42
Regional (Regional) 39 16 22

Table 3: Macro evaluation scores for feature combination INGREDIENTS, INGR.
CLASSES, INGR. RANKS and HIGH. A. INGR. over all categories of a superclass of the
hierarchy with the logistic regression classifier.

distinction between them is unclear. To investigate this in more
detail, we visualize randomly selected subsets of 5,000 recipes
by projecting the feature matrix with INGREDIENTS features into
two dimensions via t-SNE [[14]. Figure [5|shows plots of the re-
sulting spaces for six different root categories. Each point rep-
resents a recipe of a specific leaf category. “Overlap” denotes
recipes that belong to more than one leaf. We find that some
categories seem to be comparably easy to separate from oth-
ers after projection, for example “dessert” in “course”, or “bak-
ing” in “preparation methods”. Other categories have recipes
located as single cluster but are subsumed by other categories,
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Figure 4: Visualization of an excerpt of the decision tree for category “baking”, trained with the INGREDIENTS feature.

e.g., “cookies” in “baking & desserts” and “Christmas” in “sea-
sonal”.

Another phenomenon is that the recipes of a category are
spread across the whole plot but with varying density (like “quick
and easy” in “special”). Some categories do not form clusters,
such as “cake”. This pattern is particularly noticeable for “spe-
cial” where most categories (except for “quick and easy”) are
indistinguishable. This result suggests that some categories are
more difficult to distinguish than others. This may be caused ei-
ther by inaccurate category definitions or by inadequate feature
representations.

4.4. Feature Analysis

To understand the problem structure of the classification
task, we generate lists of features ranked by pointwise mu-
tual information. The complete list of most relevant features
is available as downloacﬂ Here, we limit ourselves to an exem-
plifying discussion of the categories “pork™ and “vegetarian”.
Interestingly, the ingredient “pork™ does not appear in the list
of typical features for the category “pork”. This is in line with
previous results on wine reviews [10]. In contrast, the most
relevant features are “yellow pepper”, “fried pepper”, “orange
mustard”, and “barbecue sausages”. For other categories with
defining ingredients such as “eggs”, we see a similar pattern:

3http://www.ims.uni-stuttgart.de/data/
recipe-categorization

The defining ingredient is often not among the most typical fea-
tures. This is presumably because eggs occur in many dishes
and are therefore not precise enough to distinguish egg recipes
from non-egg recipes. Putting eggs into focus happens by cooc-
currence with other specific ingredients.

Most atypical recipes in the “pork™ category are “vanilla
sugar”, “strawberries”, “powdered sugar” and “raspberries”, all
of which match our gustatory intuition. As the most atypical
features for “vegetarian” recipes, we find fish and meat ingredi-
ents, whereas the list of most typical features are mainly vegeta-
bles (e.g., tomatoes, flour, green spelt grain, rice cream, falafel).

4.5. Error Analysis

For a qualitative error analysis, we pick the category “Pasta”.
We identified three prominent classes of false positives: first,
recipes containing noodles as their main ingredient (e.g. “Ital-
ienischer Pastasalat” (Italian pasta salad) or “Sommerspaghetti”
(summer spaghetti)); second, recipes where noodles are a side
dish (e.g. “Schweinelendchen in Kisesof3e” (pork loin in cheese
sauce)); third, recipes for pasta dough (which are often not la-
beled as pasta in the database). Note that the first and third case
are arguably annotation errors caused by the lack of annotation
guidelines. Thus, error analysis could be used to consolidate the
recipe database either manually or semi-automatically. Con-
versely, the second case may be caused by features not being
expressive enough. For example, the feature “Nudeln” (noo-
dles) is only a moderately good indicator for pasta dishes as it
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Figure 5: Visualization of categories based on INGREDIENTS with t-SNE.
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Figure 6: Precision@k for different values of k (log axis) for the similarity
search experiment for categories with more than five results in our evaluation
sample.

does not capture the importance of the ingredient. This points
towards a need for more sophisticated features.

The set of false negative “Pasta” dishes consists mainly of
sauces that are served with pasta but do not contain any noodles
themselves (e.g. “Bolognese sauce”). Another frequent cause
of false negatives are again underspecified annotation guide-
lines. For instance, “Ravioli mit zweierlei Fiillung” (ravioli
with twofold filling) is an example of a recipe for dough anno-
tated as “Pasta”. However, the features for this recipe are either

too basic (e.g., “Teig” (dough)) or too specific (e.g., “Teigradchen”

(dough circles)) to be good predictors for this category on their
own.

4.6. Similarity Search

In addition to the supervised classification setup described
in Section ] we evaluate the viability of the feature sets in an
unsupervised setting. Our intended use case is similarity search,
i.e., the retrieval of related recipes for a reference recipe. To
accomplish this, we use cosine similarity over the vector space
spanned by the best feature set for classification: INGREDIENTS
and NOUNS.

For the evaluation in the setting of discovering similar, po-
tentially duplicate recipes, we randomly sample 81 query recipes
from the full data set (described in Section[d.T)). For each query
recipe, we calculate its cosine similarity to every other recipe
and rank them by similarity. We annotate each pair of query
and candidate for relevance, i.e., that the candidate is similar to
the query in the sense that it is a (near) duplicate. Based on this
annotation, we calculate the averaged precision@k curve for
1 < k < 100. Please note, however, that we did not calculate
inter-annotator agreement and did not perform multiple anno-
tations for each query-recipe pair. The annotators were three
authors of this paper.
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Figure [6] shows precision@k over our manually annotated
test set. We find that precision is high at the top of the rank-
ing and then degrades rapidly for lower-ranked items. At the
top ranked position, we achieve a precision@1 of 0.94. Pre-
cision@5 is at 0.43, while Precision@10 is at 0.35. Preci-
sion@100 is 0.18. These results show that the similarity pre-
diction is particularly useful when a small set of related recipes
is to be retrieved. Given a duplicate detection task as an instance
of similarity search, these results show that most duplicates are
indeed in the top results of the ranked list. The decreasing value
for precision @k is not necessarily an indicator for inferiority of
our method. Instead, it shows that the average number of simi-
lar recipes for a query is limited.

This is backed by differences for different categories in our
evaluation data. For instance, query recipes from the category
“Cakes” show a higher result (amongst others). Here, the re-
sults show a higher precision @k curve, for instance with preci-
sion@5 of 0.51.

We observe differences when comparing the similarity search
experiment to the classification experiment. Only similarity
search for the categories “cake” and “dessert”, which performed
well in the classification experiment, scored better than average.
The categories “baking”, “pasta”, “clever and cheap”, “beef”
and “vegetarian”, which were also amongst the 10 best per-
forming categories for classification, yielded scores worse than
average. However, the category “clever and cheap”, that per-
formed second worst in the classification experiment is the best
performing category for similarity search (among the examined
categories).

5. Discussion, Conclusion & Future Work

In this paper, we have shown that logistic regression can
classify recipes on the Chefkoch.de database with up to 57 % F;.
The decision tree classifier underperforms but allows for gain-
ing insight in the structure of recipes and the influence of ingre-
dients on the category, as shown on the example of the category
“Baking”. Feature analysis revealed that ingredients alone are
nearly as good an indicator as the recipe description. Informa-
tion from both sources complements each other.

We expected the combination of verbs with ingredients to
be superior to other word classes and features from the classes
separately. Surprisingly, our best model contradicts our intu-
ition: Nouns are more important for classification than verbs.
Combining verbs and ingredients even causes a drop in perfor-
mance, presumably due to data sparsity with the resulting large
feature set and overfitting to the comparably small number of
training instances. We conclude that nouns are more important
than activities in the description. Our error analysis revealed
that many classification mistakes arise due to inconsistencies
in the dataset. This suggests the applicability of our model to
curate the database as well as to support users in finding appro-
priate categories.

Visualization of our recipe feature spaces highlights the dif-
ficulty of the task. For some categories, classification is com-
parably simple, while for others it remains challenging. This
is, at least partially, due to the selection of our feature sets



— for instance the visualization based on ingredients suggests
that subcategories of baking and desserts are difficult to distin-
guish. However, features which take into account the process
of preparation may be able to measure the difference between,
for instance, tortes and cake.

For future work, we will investigate the use of our statis-
tical model for supporting manual database curation. After
correcting part of the database, we can retrain the model to
spot new inconsistencies. This leads to an iterative cleaning
process. To address challenges presented by classes centered
around culture (e.g., purpose or origin of a dish), we could ei-
ther make use of more external resources, such as databases
of the origin of ingredients, or attempt a hierarchical classifi-
cation approach, first determining the location of a dish on a
higher level (e.g., ”Asia”) before moving towards a more granu-
lar set of classes (e.g., detecting ”South East Asia”, then finally
”Thailand”). For further feature engineering, we suggest two
routes: On the one hand, we can enrich the textual description
through structured information extraction; this includes more
sophisticated grounding to ontological concepts and semantic
role labeling. On the other hand, we suggest to develop embed-
dings of both ingredients and activities into a joint vector space.
These will enable generalization over different substitutes and
preparation procedures. Such an approach might also be help-
ful to learn what differentiates a defining ingredient from oth-
ers. Another route of future work is the use of structured learn-
ing approaches to also make use of relations between different
categories. Methods to be employed will include probabilistic
graphical models.
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