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Abstract. Template-based information extraction generalizes over stan-
dard token-level binary relation extraction in the sense that it attempts
to fill a complex template comprising multiple slots on the basis of infor-
mation given in a text. In the approach presented in this paper, templates
and possible fillers are defined by a given ontology. The information
extraction task consists in filling these slots within a template with previ-
ously recognized entities or literal values. We cast the task as a structure
prediction problem and propose a joint probabilistic model based on
factor graphs to account for the interdependence in slot assignments.
Inference is implemented as a heuristic building on Markov chain Monte
Carlo sampling. As our main contribution, we investigate the impact of
soft constraints modeled as single slot factors which measure preferences
of individual slots for ranges of fillers, as well as pairwise slot factors
modeling the compatibility between fillers of two slots. Instead of relying
on expert knowledge to acquire such soft constraints, in our approach
they are directly captured in the model and learned from training data.
We show that both types of factors are effective in improving information
extraction on a real-world data set of full-text papers from the biomedical
domain. Pairwise factors are shown to particularly improve the perfor-
mance of our extraction model by up to +0.43 points in precision, leading
to an F1 score of 0.90 for individual templates.

Keywords: Ontology-based Information Extraction; Slot Filling; Prob-
abilistic Graphical Models; Soft Constraints; Database Population

1 Introduction

Initiated by the advent of the distant supervision [13] and open information
extraction paradigms [2], the last decade has seen a tendency to reduce information
extraction problems to relation extraction tasks. In the latter, the focus is on
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extracting binary entity-pair relations from text by applying various types of
discriminative classification approaches. We argue that many tasks in information
extraction (in particular, when being used as an upstream process for database
population) go beyond the binary classification of whether a given text expresses
a given relation or not, as they require the population of complex template
structures. Such templates consist of a number of typed slots to be filled from
unstructured text [6]. Following an ontology-based approach [20], we assume
that the templates (including slots and the types of their potential fillers) are
pre-defined in a given ontology.

We frame template-based information extraction as an instance of a structured
prediction problem [17] which we model in terms of a joint probability distribution
over value assignments to each of the slots in a template. Subsequently, we will
refer to such templates as schemata in order to avoid ambiguities. Formally, a
schema S consists of typed slots (s1, s2, . . . , sn). The slot filling task corresponds
to the maximum a posteriori estimation of a joint distribution of slot fillers given
a document d

(s1, s2, . . . , sn) = argmax
s′1,s

′
2,...,s

′
n∈Φ

P (s1 = s′1, . . . , sn = s′n | d) , (1)

where Φ is the set of all possible slot assignments.
Slots in a schema are interdependent, and these dependencies need to be

taken into account to avoid incompatible slot assignments. A simple formulation
in terms of n binary-relation extraction tasks would therefore be oversimplifying.
On the contrary, measuring the dependencies between all slots would render
inference and learning intractable. We therefore opt for an intermediate solution,
in which we analyze as to what extent measuring pairwise slot dependencies helps
in avoiding incompatibilities and finally to improve an information extraction
model for the task.

We propose a factor graph approach to schema/template-based information
extraction which incorporates factors that are explicitly designed to encode such
constraints. Our main research interest is therefore to (1) understand whether
such constraints can be learned from training data (to avoid the need for manual
formulation by domain experts), and (2) to assess the impact of these constraints
on information extraction performance.

We evaluate our information extraction model on a corpus of scientific pub-
lications reporting the outcomes of pre-clinical studies in the domain of spinal
cord injury. The goal is to instantiate multiple schemata to capture the main
parameters of each study. We show that both types of constraints are effective, as
they enable the model to outperform a naive baseline that applies frequency-based
filler selection for each slot.

2 Related Work

Template/Schema-based information extraction dates back to the MUC-4 Shared
Task [18] which aimed at extracting instantiations of templates describing terrorist
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attacks. More recently, Haghighi et al. [7] focus on corporate acquisition events.
Information extraction approaches in this line of research are commonly limited
to only one or a fixed set of templates, each of them containing only a comparably
small set of slots. Obviously, these assumptions pose severe restrictions to real-
world application scenarios. Many tasks in the context of knowledge discovery
from scientific literature [8], for instance, require a rich representation of the
technical domain of interest, which commonly involves numerous templates with
multiple (and possibly hierarchically embedded) slots.

Recent examples of reducing slot filling problems to relation extraction tasks
are Riedel et al. [15] with a focus on knowledge base completion, Zhang et al. [21],
Adel et al. [1], and Singh et al. [16] in the context of cold-start knowledge base
population. While our work also addresses the cold-start problem, our domain of
application requires the population of complex ontologically typed schemata. We
approach this challenge using undirected probabilistic graphical models which
integrate coherence constraints over pairs of slots within a schema. Similar
techniques have been proposed for the more shallow problems of HMM-based
sequence labeling by Chang et al. [5] and relation extraction by Lopez de Lacalle
& Lapata [12]. In line with the latter approach, we aim at inducing constraint
knowledge automatically from training data.

Methodologically, our work is similar to collective information extraction with
undirected graphical models as proposed by Bunescu et al. [4] or Kluegl et al. [9];
however, these approaches are limited to problems of text segmentation, entity
tagging and extraction of individual relations.

As the only precursor of our work towards information extraction in the spinal
cord injury domain, Paassen et al. [14] address entity extraction in isolation, i. e.,
they aim at detecting all entities taking part in a relation, without considering
the relation classification task as such.

3 Method

We frame the slot filling task as a joint inference problem in undirected proba-
bilistic graphical models. Our model is a factor graph [11] which probabilistically
measures the compatibility of a given textual document d consisting of tokenized
sentences χ, a fixed set of entity annotations A, and a to be filled ontological
schema S. The schema S is automatically derived from an ontology and is de-
scribed by a set of typed slots, S = {s1, . . . , sn}. Let C denote the set of all
entities from the ontology, then each slot si ∈ S can be filled by a pre-defined
subset of C called slot fillers. Further, each annotation a ∈ A describes a tuple
〈t, c〉 where t = (ti, . . . , tj) ∈ χ is a sequence of tokens with length ≥ 1 and a
corresponding filler type c ∈ C.

3.1 Factorization of the Probability Distribution

We decompose the overall probability of a schema S into probability distributions
over single slot and pairwise slot fillers. Each individual probability distribution
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Fig. 1. Factor graph of our model for an exemplary ontological schema S.

is described through factors that measure the compatibility of single/pairwise
slot assignments. An unrolled factor graph that represents our model structure is
depicted in Figure 1. The factor graph consists of different types of factors that are
connected to subsets of variables of y = {y0, y1, . . . , yn} and of x = d = {χ,A},
respectively. We distinguish three factor types by their instantiating factor graph
template {T ′, T ′d, T ′′d } ∈ T : (i) Single slot factors Ψ ′(yi) ∈ T ′ that are solely
connected to a single slot yi, (ii) Single slot+text factors Ψ ′(x, yi) ∈ T ′d
that are connected to a single slot yi and x, (iii) Pairwise slot+text factors
Ψ ′′(x, yi, yj) ∈ T ′′d that are connected to a pair of two slots yi, yj and x.

The conditional probability P (y | x) of a slot assignment y given x is then

P (y|x) =
1

Z(x)

∏
yi∈S

[
Ψ ′(yi) · Ψ ′(x, yi)

] ∏
yi∈S

∏
yj∈S

[
Ψ ′′(x, yi, yj)

]
, (2)

where Z(x) denotes the partition function and all factors are formulated as
Ψ(·) = exp(〈fT (·), θT 〉) with sufficient statistics fT (·) and parameters θT (T ∈ T
and Ψ ∈ {Ψ ′, Ψ ′′}).

3.2 Inference and Learning

We perform Markov chain Monte Carlo (MCMC) sampling to approximate a
posterior distribution, while sharing the factorization properties as defined by
the factor graph [10]. We learn the parameters via SampleRank [19].

Ontological Sampling The generation of proposal states in our MCMC sampling
procedure follows the idea of Gibbs sampling, mainly applying atomic changes
to slots. The initial state s0 in our exploration is empty, thus y = (∅). A set of
potential successors is generated by a proposal function changing a slot by either
deleting an already assigned value or changing the value to another slot filler.
The state with the highest probability st+1 is chosen as successor state only if
p(st+1) > p(st). The inference procedure stops, iff st+3 = st.
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Objective Function Given a predicted assignment y′ of all slots in schema type
Ŝ and a set G of instantiated schemata of type Ŝ from the gold standard, the
training objective is

max
y∗∈G

F1(y∗,y′) , (3)

where F1 is the harmonic mean of precision and recall, based on the overlap of
assigned slot values between y′ and y∗.

3.3 Factors and Constraints

At the core of our model are features that encode soft constraints to be learned
from training data. In general, these constraints are intended to measure the
compatibility of slot fillers within a predicted schema. Such soft constraints are
designed through features that are described in the following.

Single-slot constraints in template T ′ We include features which measure
common, acceptable fillers for single slots with numerical values. Given filler
annotations {ai = 〈v, c〉} of slot yi, the model can learn individual intervals for
different types of fillers such as temperature (−10–40), or weight (200–500), for
example. For that, we calculate the average µ and standard deviation σ for each
particular slot based on the training data. For each slot si in schema S, a boolean
feature fsiσ=n is instantiated for each n ∈ {0, . . . , 4}, indicating whether the value
yi is within n standard deviations σsi of the corresponding mean µsi . To capture
the negative counterpart, a boolean feature fsiσ>n is instantiated likewise:

fsiσ=n(yi) =

{
1 iff

⌈
(
v−µsi

σsi
)
⌉

= n

0 otherwise.
fSi
σ>n(yi) =

{
1 iff

⌈
(
v−µsi

σsi
)
⌉
> n

0 otherwise.
(4)

In this way, the model learns preferences over possible fillers for a given slot
which effectively encode soft constraints such as “the weight of rats typically
scatters around a mean of 300 gram by two standard deviations of 45 gram”.

Pairwise Slot Constraints in T ′′
d In contrast to single-slot constraints, pair-

wise constraints are not limited to slots with real-valued fillers. Soft constraints on
slot pairs are designed to measure the compatibility and (hidden) dependencies
between two fillers, e.g., the dependency between the dosage of a medication and
its applied compound, or between the gender of an animal and its weight. This
is modeled in terms of their linguistic context and textual locality, as discussed
in the following.

We assume that possible slot fillers may be mentioned multiple times at
various positions in a text. Therefore, given a pair of slots (si, sj), we define λ
as an aggregation function that returns the subset of annotations λ(si) = {a =
〈t, c〉 ∈ A | a(c) = si(c)}. We measure the locality of two slots in the text by
the minimum distance between two sentences containing annotations for the
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corresponding slot fillers. A bi-directional distance for two annotations is defined
as δ(ak, al) = |sen(ak)− sen(al)| where sen denotes a function that returns the
sentence index of an annotation. For each n ∈ {0, . . . , 9}, a boolean feature fδ=n
is instantiated as:

f
si,sj
δ=n (yi, yj) =

{
1 iff n = minak∈λ(yi),al∈λ(yj) δ(ak, al)

0 otherwise.
(5)

To capture the linguistic context between two slot fillers yi and yj , we define a
feature fsiπn

(yi, yj) that indicates whether a given N -gram πn ∈ π with 1 < N ≤ 3
occurs between the annotations ak ∈ λ(yi) and al ∈ λ(yi) in the document.

Textual Features in T ′ and T ′
d Given a single slot si with filler yi and the

aggregated set of all corresponding annotations λ(yi), we instantiate three boolean
features for each annotation a ∈ λ(yi) as follows.

Let Ls(lyi , a(t)) be the Levenshtein similarity between the ontological class la-
bel lyi , and the tokens of an annotation a(t). Two boolean features fbin(smax)<∆(yi)
and fbin(smax)≥∆(yi) are computed as:

fbin(smax)<∆(yi) =

{
1 iff b < ∆

0 otherwise.
fbin(smax)≥∆(yi) =

{
1 iff b ≥ ∆
0 otherwise.

, (6)

where b = bin(smax) is the discretization of the maximum similarity smax into
intervals of size 0.1, and

smax = max
a∈λ(yi)

Ls(lyi , a(t)) with Ls = 1− levenshtein(lyi , a(t))

max(len(lyi), len(a(t)))
. (7)

Finally, we instantiate features fsiπk context(yi) and fsiπk within(yi), indicating
whether an N -gram πk occurs in the context (before or after) or within any
annotation of slot yi.

4 Database Population in the Spinal Cord Injury Domain

4.1 Problem Description

We address the problem of ontology-based information extraction in a slot filling
setting as a prerequisite for cold-start database population. The extraction task
comprises multiple schemata of different types, each of them being provided by
a domain ontology and containing multiple slots. Each slot in a schema needs
to be filled either by a literal from the input document or by a class from the
ontology, depending on whether it is derived from a data-type or object-type
property (cf. Figure 2).

We consider slot filling as a document-level task, i.e., entities filling the slots
of a particular schema may be dispersed across the entire text. In addition,
each literal or ontological category can, in principle, fill multiple slots of the
appropriate type. We approach the task in a supervised machine learning approach;
supervision is available at the document level in terms of fully instantiated gold
schemata without direct links between slot fillers and text mentions.
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4.2 Application Context

Fig. 2. Information extraction workflow: Domain concepts and associated slots are
defined in a domain ontology (left) and transformed into schema structures (middle)
which are automatically populated from text (right) by the slot filling model.

Our work in the PSINK project4 aims at information extraction from full-text
scientific publications on pre-clinical experiments in the spinal cord injury domain.
The results of the extraction process (i.e., fully instantiated schemata as shown
in Fig. 2) will be made accessible in a comprehensive database in order to foster
translation from pre-clinical trials into clinical therapeutic concepts bearing the
potential to induce neuronal regeneration in human patients suffering from spinal
cord injuries.

This information extraction task is an instance of the problem described
in Section 4.1, with the extraction schema being derived from the specifically
designed Spinal Cord Injury Ontology (cf. Section 4.3 below).

4.3 Ontology and Data Set

Spinal Cord Injury Ontology (SCIO) Pre-clinical trials in the spinal cord
injury domain follow strict methodological patterns. Experimental protocols
and the main outcomes of pre-clinical studies on spinal cord injury are formally
represented in SCIO [3]. In total, the ontology contains more than 500 classes and
approx. 80 properties (slots). SCIO top-level classes defining the schema types
are AnimalModel, InjuryModel, Treatment, InvestigationMethod and
Result. Slots are either object-type properties which can be filled by a SCIO
class, or data-type properties which are filled with free text. For example, Fig. 2
(left and middle part) presents the AnimalModel class along with its predefined
slots: ageCategory, gender and species are object-type properties; age and weight
are data-type properties.

4 http://www.psink.de
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Annotated Data Set The annotated data set was created by two SCI experts
who annotated 25 full-text scientific papers from the SCI literature. Annotations
were provided at the level of fully instantiated schemata per document, using
the set of top-level classes in SCIO and their corresponding properties as annota-
tion schema. The entire annotation process comprises three steps: (i) mention
identification, (ii) entity recognition (in case of data-type properties) and linking
(object-type properties), (iii) schema instantiation, and (iv) filling the slots of
an instantiated schema with an appropriate entity. The latter steps are due to
the fact that the cardinality of schemata of a particular type per document is
unknown a priori, and multiple schemata may share individual slot fillers. The
following example shows a sentence that describes two instantiations of an Ani-
malModel schema which share the slot fillers species (SpragueDawleyRat)
and ageCategory (Adult): “A total of 39 Sprague-Dawley rats were used for
these experiments: adult males (285-330 g) and females (192-268 g).”

Inter-annotator agreement at the level of fully instantiated schemata in terms
of F1 score between annotators amounts to 0.93 for AnimalModel, 0.79 for
Injury, 0.77 for Treatment and 0.65 for InvestigationMethod.

5 Experiments

In the following section, we describe our experimental settings, the evaluation
metrics and results. Model performances are independently reported for four SCIO
schemata: AnimalModel, Injury, Treatment, and InvestigationMethod
(cf. Section 4.3). As a preprocessing step, we apply symbolic entity recognition in
order to generate annotations A. The regular expressions used are automatically
generated from ontology class labels. In case of data-type properties (e.g., weight
of an animal), regular expressions are manually created.

5.1 Experimental Settings

The system is evaluated in a 6-fold cross validation on the complete data set. In
all experiments, we restrict the complexity of the schemata to first-order slots,
i.e., ontological properties that are directly connected to their respective domain
class. In the current approach, we are not aiming at predicting the correct number
of instantiations per schema type. Thus, our system is restricted to fill a single
schema of each type per document, even if it contains multiple instances of the
same schema type (e.g., multiple Treatments).

With respect to this restriction, we report the evaluation results for both
(i) Full Evaluation (taking the actual number of gold schemata into account),
and (ii) Best Match Evaluation (comparing the predicted schema to the best
matching gold schema).

Further, we report the performance for two different models, in order to inves-
tigate the relative impact of single-slot constraints vs. pairwise slot constraints.
In the pairwise slot filling (PSF) model, the inference and the factor graph is
based on the joint assignment of slot pairs, whereas in single slot filling (SSF)
model, all slots are independently filled.



9

Evaluation Metrics We report model performances as macro precision, recall
and harmonic F1. Given a document with a set of gold schemata G of type
S = {s0, . . . sn} and the predicted schema p, the comparison is always based on
the best assignment g′ = argmaxg∈G F1(p, g). For the computation of the overall
F1 score, we convert all ontological schemata into sets of slot-filler pairs with
p = {s′0 = cj , . . . , s

′
n = ck} and G = {g0, . . . , g′, . . . , gl} = {(s00 = ca, . . . , s

0
n =

cb), . . . , (s
′
0 = cc, . . . , s

′
n = cd), . . . , (s

l
0 = ce, . . . , s

l
n = cf )}. The overall F1 score

is calculated based on the two sets of p and G. We define a true positive (tp) as
a slot-filler pair that are in both p and G, a false positive (fp) as a pair that is
in p but not in G, and a false negative (fn) as a pair that is in G but not in p.
During the Best Match Evaluation, we set G = {g′}.

Most Frequent Filler Baseline We compare the performance of our models in
all settings against a naive but plausible baseline. Following the intuition that
important information is mentioned in a higher frequency than non-important
information, a slot is always filled with the filler that has the highest annotation
frequency. In the following, we refer to this procedure as Most Frequent Filler
(MFF) baseline.

5.2 Results

In the following, we describe the evaluation results for all experiments. First,
we compare the performance in the Full Evaluation vs. Best Match Evaluation
settings. In the former setting, we expect a rather low recall due to the restriction
of predicting exactly one schema per type. This leads to many false negatives,
as multiple instances of the same type cannot be fully covered yet. Hence, we
hypothesize a significant increase in recall in the Best Match Evaluation setting.
By comparing the predicted schema to the best match only, we investigate
whether the low recall is due to the large amount of missing schemata. If so, this
would indicate that our model is able to select the correct slot fillers among a
huge set of possible candidates. The performance of all models in both settings
is reported in Table 1.

Full Evaluation Results The results show a strong recall of our baseline model
with a distinct lack in precision. The baseline yields the highest recall among
all models and schema types except for the AnimalModel (0.55 for baseline
vs. 0.90 for SSF/PSF). Compared to the SSF model, we notice a considerable
increase in precision in all schema types which is most pronounced in the Investi-
gationMethod (+0.64). The increase in precision for the three other schemata
are between +0.24 and +0.36. Comparing the PSF to the SSF model, we observe
further strong improvements in precision and slight improvements in recall. The
PSF model clearly outperforms the baseline for the AnimalModel with an
increase in F1 of +0.39, the Injury +0.12, and the InvestigationMethod
with +0.14. Despite the precision being increased by +0.46 in the Treatment,
the baseline shows a higher F1 score in this configuration (+0.03), due to a drop
in recall by −0.10.
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Table 1. Performance of Most Frequent Filler Baseline (MFF) vs. Single Slot Filler
(SSF) and Pairwise Slot Filler (PSF) models in the Full Evaluation (full) and Best
Match (best) setting.

MFF SSF PSF

P R F1 P R F1 P R F1

Animal full 0.48 0.55 0.51 0.84 0.90 0.86 0.91 0.90 0.90
Model best 0.48 0.57 0.52 0.84 1.00 0.91 0.91 1.00 0.95

Injury full 0.28 0.38 0.31 0.52 0.22 0.31 0.77 0.30 0.43
best 0.28 0.43 0.33 0.52 0.29 0.35 0.77 0.40 0.50

Treat- full 0.39 0.26 0.30 0.70 0.16 0.26 0.87 0.16 0.27
ment best 0.39 0.74 0.51 0.70 0.63 0.65 0.87 0.63 0.73

Invest. full 0.36 0.45 0.36 1.00 0.39 0.50 1.00 0.39 0.50
Method best 0.36 0.98 0.52 1.00 1.00 1.00 1.00 1.00 1.00

Best Match Evaluation Results In this setting, we further investigate the recall
performance of our models compared to the previously discussed Full Evaluation
results. As we only remove uncaptured schema instances from G (cf. Section 5.1),
the precision remains the same. All models show an overall increase in recall for
all schema types. With respect to the PSF model, we can see a strong increase
in recall for InvestigationMethod by +0.61 and for Treatment by +0.47.
Further, slight increases by +0.10 and +0.07 can be observed for AnimalModel
and Injury, respectively. Similar observations can be made for the SSF model.

5.3 Discussion

Comparing the baseline model with the SSF model, we notice a very strong
increase in precision in combination with a slight drop in recall. This positive
trend in precision is continued when considering the PSF model. Further, the
results show a positive impact of pairwise over single-slot constraints on recall.

The high recall of 0.90 for the AnimalModel in the full evaluation is mainly
due to a low number (1 to 2) of instances per schema type in each document. The
fact that there is no difference in the performance of the SSF and SPF models
for the InvestigationMethod suggests a strong slot independence, so that
pairwise slot constraints do not have a big impact in this particular case. The low
increase in recall between the two evaluation settings for the Injury suggests
difficulties for this schema. In contrast, the recall increase for the Treatment
schema from 0.16 to 0.63 clearly shows that most of the errors are due to a large
number of schema instances per document.

Overall, the results show that our system is often able to select the correct
set of slot fillers for a schema, even from a huge set of possible schemata and
their corresponding slot filler candidates.
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6 Conclusions and Outlook

We have investigated the impact of single and pairwise slot constraints in a factor
graph model for schema/template-based information extraction. We found that
both types of constraints increase the overall performance of the slot filling model,
as they are able to capture soft slot restrictions (for single slots) and (hidden)
slot dependencies (for pairwise slots). We were able to show that, compared to a
plausible baseline, both constraint types are effective, with pairwise constraints
outperforming the single slot constraints. For future work, we plan to extend the
current model by incorporating further constraints beyond the current restriction
to pairwise slot dependencies, with a potential culmination in a fully joint model.

Our approach was developed in the context of the PSINK project which
aims at populating a database for pre-clinical studies in the spinal cord injury
domain. Our proposed approach lays the groundwork for this task by instantiating
ontologically defined schemata and filling them from unstructured text. In future
work, we plan to extend our approach to more complex schemata covering the
entire ontology. This raises further research questions that need to be answered,
such as How to determine the actual number of instances per schema type? and
How to efficiently explore recursively nested properties within complex schemata?
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