
Bagewadi et al

Table A. Count of entries available in the dictionaries.

Genes/Proteins Relation Trigger

Dictionaries MeSHAbbr MedDRA Original Processed Species Dictionary Spelling variants

Entries 4,683 15,436 39,386 34,392 158 207 386
Synonyms 60,554 54,885 721,455 677,943 1,330 - -

Table B. Aliases used in regular expression patterns for miRNAs identification.

Description Alias Regular Expression Pattern

Digit sequences D ([0-9]:d?d*)
Upper and lower case letters L ([a-zA-Z]:l?l*)
Lower case letters only Low ([a-z]:low?low*)
Upper case letters only Up ([A-Z]:up?up*)
Admissible hypens Z ([[\-]:z?z*)
3-letter prefix for human Pref ([hH][sS][aA])
Non-specific miRNA mentions miRNA ([mM][iI]([cC][rR][oO])+[rR]([nN][aA]s+)+)
Let-7 miRNA mention Let ([lL][eE][tT][-]*[7]?l+)
Lin-4 miRNA mention Lin ([lL][iI][nN][-]*[4]?l+)
Oncomir miRNA mention Onco ([oO][nN][cC][oO][mM][iI][rR])
Admissible tilde and hyphens Cluster (⇠[\b]-[\b]-*)
Admissible hyphens and separator term and Sep ([-]:s*((and?s,\,)?s*)+)
Admissible alpha-numerical identifiers in specific miRNA mentions Two ((?low?low+,?up?up+):two((/, *and *?D+)?two)+)
Admissible alpha-numerical identifiers in oncomir mentions Tail (?D(?Two?Cluster+,-?D?Two+)+)

Table C. Regular expression patterns used for miRNAs identification (aliases from cf. Table 2 are highlighted in bold).

Regular expression patterns Example of identified text

(?Pref+(?Lin,?Let))=m([a-zA-Z0-9]-,\n)=><nn mirna>,?m; lin-4, hsa-let-7a-1
(?Pref+(?miRNA,?Onco)(?s?s*?Tail)(?Sep?Tail)*)=m([a-zA-Z0-9]-,\n)=><nn mirna>,?m; hsa-mir-21, microRNA 101
(?Pref+(?miRNA,?Onco)[-]*(?D(?Z([/]?Z)*)+):Expr([,][-]*?Expr)*)=m=> <nn mirna>,?m; miR-17⇠92, Oncomir-1

the sentence level, where a sentence with n entities contains at most
�n
2

�

interacting pairs. We consider three approaches, described in the following.
The co-occurrence approach is often considered as a baseline, since it

involves minimal effort. Assuming all interactions to be present in isolated
sentences, this approach is complete, but may be limited in precision.
Reducing the number of false positives can be achieved by filtering with
the dictionary of relation triggers. The rationale behind this filter is that an
interaction is more likely to be described if such a term is present (we refer to
that as tri-occurrence).

To increase the precision, we use a machine learning-based approach,
formulating the relation detection as a binary classification problem: each
instance (consisting of a pair of entities) is to be classified either as not-
containing a relation or belonging to one of the four relation classes. Our
system uses lexical and dependency parsing features. Several classifiers
are tested, out of which results obtained by Support Vector Machines
(SVM), Naive Bayes and LibLINEAR are reported. For more details of
the configuration, we refer to Bobic et al. (2012).

Lexical features capture the information coming from the tokens around
the inspected pair of entities. The sentence text can be roughly divided into
three parts: text between the entities, text before the entities and text after
the entities. To improve generalization, stemming (using the Porter stemmer
(Porter, 1980)) and entity blinding is performed. Features are bag-of-words

and bi, tri, and quadri-gram based. This feature setting follows GuoDong
et al. (2005), Yu et al. (2009) and Yang et al. (2010). The presence of relation
triggers is taken into account as well, using the previously described manually
generated list. Next to lexical features, deep parsing, which provides an
insight into the entire grammatical structure of the sentence, is applied by
using the Stanford parser (Marneffe and Manning, 2010). Vertices v (tokens
from the sentence) in the dependency tree are analyzed from a lexical (text
of the token) and a syntactical (POS tag) perspective. Edges e in the tree
correspond to the information about the grammatical relations between the
vertices. Extracting relevant information from the dependency parse tree is
usually done following the shortest dependency path hypothesis (Bunescu and
Mooney, 2005). Lexical and syntactical e-walks and v-walks on the shortest
path are created by alternating sequence of vertices and edges, with the
length of 3. The information about the common ancestor vertex is captured,
as proposed by Van Landeghem et al. (2008). Furthermore, it is checked
whether the common ancestor represents a verb form (e. g. POS tag could
be VB, VBZ, VBD etc). Finally, the length of the shortest path (number of
edges) between the entities is considered as well.

The system is developed in Java, using Weka 3.7.421 (Hall et al., 2009).

21
http://www.cs.waikato.ac.nz/ml/weka/

4


