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About Myself

● 1999–2006: Studies at University of Dortmund:
Computer science with minor psychology
● 2006–2010: Doctoral studies at Fraunhofer SCAI, St. Augustin:
Biomedical text mining, machine learning
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Probabilistic machine learning, MCMC inference
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● 2013–2014: Postdoc at Bielefeld University:
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● 2015: Co-Founder of Semalytix GmbH (exit 2020)
Social Media Health Mining
● 2014–2024: (Senior) Lecturer/apl. Prof at IMS, Uni Stuttgart
Natural Language Understanding and Generation
● 03/2024: Full Professor for Fundamentals of NLP, Bamberg
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Emotion Analysis: What we want to do.

Emotion Analysis Systems Category: Joy
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Emotion Examples

Which emotion was felt by the
author of the examples?

How did you recognize that?

● “She became angry.”
● “A tear was running down my face.”
● “Their dog ran towards me quickly.”

With this exercise, we discussed:
● What is an appropriate set of emotions?
● How are they expressed/recognized?
● Emotions are subjective.
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How to define a categorical system of emotions?

love

submission

awe

disapprovalremorse

contempt

aggressiveness

optimism

interest

anticipation

vigilance

ecstasy

joy

serenity

acceptance

trust

admiration

terror fear apprehension

distraction

surprise

amazem.
grief

sadness

pensiveness

boredom

disgust

loathing

rageangerannoyance

V
al
en
ce

Arousal

content joyful

depressing angry

delighted

glad

alarmed

annoyed

frustratedmiserable

bored

tired

calm

satisfied

pleased
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Definition of Emotions: Components

Emotion (Scherer, 2005)

Emotions are “an episode of interrelated,
synchronized changes in the states of […] five
organismic subsystems in response to the
evaluation of a […] stimulus-event …”
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Definition of Emotions: Components

Emotion (Scherer, 2005)

Emotions are “an episode of interrelated,
synchronized changes in the states of […] five
organismic subsystems in response to the
evaluation of a […] stimulus-event …”

Event

Feeling Expression Bodily Symptom

Cognitive AppraisalAction Tendency
Components

Fear Name
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Cognitive Appraisal in Scherer’s Component Process model

E
ve
n
t

Relevance Implication Coping Normative
Significance

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.

Fundamentals of Natural Language Processing Roman Klinger 12 / 46



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Cognitive Appraisal in Scherer’s Component Process model

E
ve
n
t

Relevance Implication Coping

Novelty

Intrinsic
Pleasantness

Goal
Relevance

Normative
Significance

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.

Fundamentals of Natural Language Processing Roman Klinger 12 / 46



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Cognitive Appraisal in Scherer’s Component Process model

E
ve
n
t

Relevance Implication Coping

Novelty

Intrinsic
Pleasantness

Goal
Relevance

Causality:
agent

Goal
conduciveness

Outcome
probability

Urgency

Causality
motive

Expectation
discrepancy

Normative
Significance

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.

Fundamentals of Natural Language Processing Roman Klinger 12 / 46



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Cognitive Appraisal in Scherer’s Component Process model

E
ve
n
t

Relevance Implication Coping

Novelty

Intrinsic
Pleasantness

Goal
Relevance

Causality:
agent

Goal
conduciveness

Outcome
probability

Urgency

Causality
motive

Expectation
discrepancy

Control

Adjustment

Power

Normative
Significance

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.

Fundamentals of Natural Language Processing Roman Klinger 12 / 46



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Cognitive Appraisal in Scherer’s Component Process model

E
ve
n
t

Relevance Implication Coping

Novelty

Intrinsic
Pleasantness

Goal
Relevance

Causality:
agent

Goal
conduciveness

Outcome
probability

Urgency

Causality
motive

Expectation
discrepancy

Control

Adjustment

Power

Internal
standards

External
standards

Normative
Significance

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.

Fundamentals of Natural Language Processing Roman Klinger 12 / 46



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Research Questions

● Can appraisals and emotions be annotated reliably by external annotators?
● Can we computationally model appraisals and does it help emotion categorization?
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Approach

Writer

recollects

Event

(1)

● Production: 550 event descriptions for anger, boredom, disgust, fear, guilt/shame, joy,
pride, relief, sadness, surprise, trust, no emotion
● Five readers for subset of produced texts
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Examples

pride I baked a delicious strawberry cobbler.

fear I felt ... when there was a power outage in my home. That day, my wife and I were
cuddling in the sitting room when a thunderstorm started. Then ... filled me when
thunder hit our roof and all the lights went off.

joy I found the perfect man for me, and the more time goes on, the more I realized he was
the best person for me. Every day is a ....
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Reliability Results

● Validators agree more with each other than with
the generator

● V–G agreements:

● Higher agreement for Female pairs
● Low age difference leads to higher agreement

● V properties only:

● Event familiarity hurts agreement for
appraisal

● We expected Open annotators to perform
better.

● Emotional stability “hurts” emotion
annotation.

● Extraversion, Conscient., Agreeableness help.

● Most differences are quite small (but significant)

Fundamentals of Natural Language Processing Roman Klinger 16 / 46
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Reliability Results

Agreement

Emotion Appraisal
F1 Acc. RMSE

Condition Val. #Pairs G–V V–V G–V V–V G–V V–V

All Data 6600 12000 .49 .50 ∗.49 ∗.52 ∗1.57 ∗1.48

Gender
match

M–M 631 1113 .50 ∗.45 .51 ∗.49 1.55 1.50
F–F 2405 1377 .49 ∗.52 .51 ∗.55 1.57 ∗.1.50
̸= 2962 3920 .49 ∗.48 .50 ∗.52 1.57 ∗.1.48

Age diff.
> 7 3089 7991 .49 ∗.48 .51 ∗.51 ∗1.58 1.48
≤ 7 2076 3939 .49 ∗.51 .50 ∗.54 ∗1.56 1.48

Validators’
Event Fam.

> 3 1386 540 .49 .44 .51 .47 ∗1.60 ∗1.42
≤ 3 2099 676 .48 .45 .49 .48 ∗1.58 ∗1.47

Validators’
Openness

+ 2685 1472 .49 .49 .50 .52 1.57 1.47
− 3000 1568 .49 .48 .50 .51 1.57 1.48

Validators’
Conscien.

+ 3151 1638 ∗.48 .51 ∗.49 .53 ∗1.57 ∗1.49
− 2589 1426 ∗.50 .51 ∗.51 .54 ∗1.56 ∗1.46

Validators’
Extraversion

+ 2878 1685 .49 ∗.48 .50 ∗.51 ∗1.58 ∗1.51
− 2812 1535 .50 ∗.52 .51 ∗.55 ∗1.56 ∗1.46

Validators’
Agreeabl.

+ 2675 1451 .49 ∗.51 .51 ∗.54 ∗1.58 1.47
− 2930 1553 .48 ∗.45 .49 ∗.49 ∗1.56 1.47

Validators’
Emot. Stab.

+ 2838 3009 ∗.48 ∗.48 ∗.49 ∗.51 ∗1.57 ∗1.50
− 2792 2897 ∗.50 ∗.51 ∗.51 ∗.54 ∗1.56 ∗1.46

● Validators agree more with each other than with
the generator

● V–G agreements:

● Higher agreement for Female pairs
● Low age difference leads to higher agreement
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Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Examples (writer/reader/avg. writer–reader agreement as error)

● All writers/readers agree on emotion, high average appraisal agreement

pride, .65 I baked a delicious strawberry cobbler
fear, .84 A housemate came at me with a knife

● All writers/readers agree on emotion, low average appraisal agreement

disgust, 2.0 His toenails where massive
fear, 2.1 I felt ... going in to hospital

● All readers agree on the emotion, but not with the writer, high appraisal agreement

trust, joy, .87 I am with my friends
anger, fear, 1.1 My waters broke early during pregnancy

● All readers agree on the emotion, but not with the writer, low appraisal agreement

pride, sadness, 1.7 That I put together a funeral service for my Aunt
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Appraisals add additional information to emotion analysis

That I put together a
funeral service for my Aunt

Dimension Writer Readers ∆

Emotion Pride Sadness

Suddenness 4 3.6 0.4
Familiarity 1 2.0 −1.0
Predictability 1 1.8 −0.8
Pleasantness 4 1.0 3.0
Unpleasantness 2 4.8 −2.8
Goal-Relevance 4 2.6 1.4
Chance-Resp. 4 4.4 −0.4
Self-Resp. 1 1.2 −0.2
Other-Resp. 1 1.4 −0.4
Conseq.-Predict. 2 1.8 0.2
Goal Support 1 1.2 −0.2
Urgency 2 3.8 −1.8
Self-Control 5 3.2 1.8
Other-Control 3 2.0 1.0
Chance-Control 1 4.6 −3.6
Accept-Conseq. 4 2.4 1.6
Standards 1 2.4 −1.4
Social Norms 1 1.2 −0.2
Attention 4 4.4 −0.4
Not-Consider 1 3.8 −2.8
Effort 4 4.6 −0.6
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Emotion Annotation Result

Conclusion
Annotators can quite well reconstruct authors emotion,
but there is a small and significant agreement drop.

Challenge

Authors recall “important” events. We do (presumably) not get a realistic subsample of event
descriptions as they appear in the wild.

● Not shown: appraisals help to disambiguate emotion categories in automatic models
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Potential Reason for V–G Discrepancy

● Isolated events are not sufficient
● Subjectivity is not only personality and demographics
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Idea: Generate backstories to explain emotions/appraisals

Event
“The loudspeaker suddenly malfunctioned and went silent.”

● Many emotion interpretations possible.
⇒ We autogenerate stories that explain such event for a given emotion.

Fundamentals of Natural Language Processing Roman Klinger 21 / 46

J. Schäfer et al. (2025). Shaping Event Backstories to Estimate Potential Emotion Contexts. arXiv: 2508 . 09954
[cs.CL]. URL: https://arxiv.org/abs/2508.09954

https://arxiv.org/abs/2508.09954
https://arxiv.org/abs/2508.09954
https://arxiv.org/abs/2508.09954


Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Idea: Generate backstories to explain emotions/appraisals

Event
“The loudspeaker suddenly malfunctioned and went silent.”

● Many emotion interpretations possible.

⇒ We autogenerate stories that explain such event for a given emotion.

Fundamentals of Natural Language Processing Roman Klinger 21 / 46

J. Schäfer et al. (2025). Shaping Event Backstories to Estimate Potential Emotion Contexts. arXiv: 2508 . 09954
[cs.CL]. URL: https://arxiv.org/abs/2508.09954

https://arxiv.org/abs/2508.09954
https://arxiv.org/abs/2508.09954
https://arxiv.org/abs/2508.09954


Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Idea: Generate backstories to explain emotions/appraisals

Event
“The loudspeaker suddenly malfunctioned and went silent.”

● Many emotion interpretations possible.
⇒ We autogenerate stories that explain such event for a given emotion.

Fundamentals of Natural Language Processing Roman Klinger 21 / 46

J. Schäfer et al. (2025). Shaping Event Backstories to Estimate Potential Emotion Contexts. arXiv: 2508 . 09954
[cs.CL]. URL: https://arxiv.org/abs/2508.09954

https://arxiv.org/abs/2508.09954
https://arxiv.org/abs/2508.09954
https://arxiv.org/abs/2508.09954


Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Backstories

Relief: I was tasked with giving a presentation to a large crowd. The sound system malfunctioned, amplifying my
voice to an ear-piercing level. The sound technician ignored the problem and chatted with someone. The audience
covered their ears and looked at me with discomfort.

The loudspeaker suddenly malfunctioned and went silent.

Fear: I arrived at a remote wilderness survival training camp, where the instructors emphasized the importance
of following loudspeaker instructions for safety. The instructors warned us about the toxic waste site nearby and
explained that the loudspeaker would alert us to any changes in air quality. During the first exercise, I struggled
to navigate the challenging terrain, but the loudspeaker provided crucial guidance, helping me stay on track. I
completed a difficult obstacle course, relying heavily on the loudspeaker’s instructions to avoid hazards and find the
safest route.

The loudspeaker suddenly malfunctioned and went silent.

Pride: I spent the entire morning upgrading the sound system with a new backup system to prevent technical issues.
The event organizer informedme that the conference was running 30minutes behind schedule, giving me extra time
to test the new backup system. I used the extra time to run a series of tests on the sound system, trying to simulate
potential failures. The keynote speaker began to talk, and the sound system was working flawlessly, but I was still
waiting for a real test of the new backup system.

The loudspeaker suddenly malfunctioned and went silent.
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Results in a Nutshell

● Backstories make interpretation more clear for models and annotators
(details not shown for time reasons).
● Effect more pronounced for some emotions than others
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Figure 7: Mean and standard deviation of emotion trajectories in event chains (x-axes corresponding to the first n
sentences of the chains; generation method: PCR) in comparison to mean emotion of events in isolation (dashed
lines).
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Results in a Nutshell

● Backstories make interpretation more clear for models and annotators
(details not shown for time reasons).
● Effect more pronounced for some emotions than others
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lines).
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Summary and Next Steps

● We learned about appraisals as an emotion model that
links the evaluation of events and emotions.
● It explains emotion categories, but also acts as a model in itself.
● Sometimes, it might just be the more appropriate emotion model.
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Argument Convincingness

● Argument quality includes:

● Logical structure: Logos
● Speaker credibility: Ethos
● Emotional appeal: Pathos

● Arguments are subjectively evaluated
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The Contextualized Argument Appraisal Framework
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"Ban plastic
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harm the
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Do appraisals explain
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Argument Appraisal Annotation Framework
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Argument Appraisal Variables

Dimension Description

Suddenness the argument appears sudden or abrupt to the receiver
Suppression the receiver tries to shut the argument out of their mind
Familiarity the argument is familiar to the receiver
Pleasantness the argument is pleasant for the receiver
Unpleasantness the argument is unpleasant for the receiver
Consequencial Importance the argument has important consequences for the receiver
Positive Consequentiality the argument has positive consequences for the receiver
Negative Consequentiality the argument has negative consequences for the receiver
Consequence Manageability the receiver can easily live with the unavoidable consequences of the argument
Internal Check the consequences of the argument clash with the receiver’s standards and ideals
External Check the consequences of the argument violate laws or socially accepted norms
Response urgency the receiver urges to immediately respond to the argument
Cognitive Effort processing the argument requires a great deal of energy of the receiver
Argument Internal Check statements in the argument clash with the receiver’s standards and ideals
Argument External Check statements in the argument violate laws or socially accepted norms
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Convincingness and Emotions – Average Values
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2.4 1.9 2.6 1.2 3.0 1.9 1.6 1.6 2.4 2.8 2.7 2.4 3.7 2.0 3.1
2.4 2.1 2.5 1.2 3.2 1.8 1.5 1.7 2.3 2.8 2.9 2.6 3.8 1.8 3.2
1.9 1.6 2.8 1.6 2.5 2.2 2.1 1.8 2.4 2.3 2.0 1.9 3.5 1.9 2.0
1.7 1.5 2.8 1.6 2.3 1.9 1.7 1.6 2.3 2.2 1.9 1.5 3.6 1.6 1.9
1.4 1.1 3.1 3.5 1.2 2.0 2.5 2.2 2.1 2.5 1.3 1.5 3.1 1.6 1.4
1.4 1.2 3.3 3.2 1.3 2.0 2.5 2.1 2.2 2.4 1.4 1.6 3.4 1.4 1.4
1.4 1.1 3.2 3.0 1.3 2.0 2.5 2.0 2.5 2.3 1.4 1.5 3.5 1.4 1.4
1.9 1.5 2.9 1.3 2.7 1.8 1.6 1.6 2.3 2.7 2.2 2.0 3.6 1.7 2.5
2.0 1.6 2.8 1.4 2.8 2.0 1.7 1.9 2.5 2.5 2.2 2.1 3.5 1.9 2.4
2.1 1.4 2.1 1.7 1.9 1.8 1.6 1.5 2.3 2.5 1.9 1.8 3.5 1.7 2.1
1.4 1.1 3.0 2.5 1.3 1.9 2.0 1.6 2.4 2.2 1.3 1.4 3.6 1.3 1.4

● Generally high
cognitive effort
● External Check explains
anger and disgust
● Familiarity indicative
for positive emotions
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1.4 1.2 3.3 3.2 1.3 2.0 2.5 2.1 2.2 2.4 1.4 1.6 3.4 1.4 1.4
1.4 1.1 3.2 3.0 1.3 2.0 2.5 2.0 2.5 2.3 1.4 1.5 3.5 1.4 1.4
1.9 1.5 2.9 1.3 2.7 1.8 1.6 1.6 2.3 2.7 2.2 2.0 3.6 1.7 2.5
2.0 1.6 2.8 1.4 2.8 2.0 1.7 1.9 2.5 2.5 2.2 2.1 3.5 1.9 2.4
2.1 1.4 2.1 1.7 1.9 1.8 1.6 1.5 2.3 2.5 1.9 1.8 3.5 1.7 2.1
1.4 1.1 3.0 2.5 1.3 1.9 2.0 1.6 2.4 2.2 1.3 1.4 3.6 1.3 1.4

● Generally high
cognitive effort
● External Check explains
anger and disgust
● Familiarity indicative
for positive emotions
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Correlations of Emotions with Convincingness
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Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Correlations of Appraisals with Convincingness

Appraisal r

Pleasantness 0.566
Positive Consequentiality 0.392
Familiarity 0.327
Negative Consequentiality 0.203
Consequential Importance 0.141
Consequence Manageability −0.034
Cognitive Effort −0.061

Appraisal r

Internal Check −0.103
Argument Internal Check −0.109
Response Urgency −0.242
Suppression −0.326
Suddenness −0.342
External Check −0.355
Unpleasantness −0.385
Argument External Check −0.497

● Pleasant arguments whose outcomes are good for the self and which are familiar are
more convincing.
● Surprising arguments and those which go against laws or social standards are
less convincing (and cause anger and disgust).
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Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:
● Direct access to the author’s assessment
● Privacy: authors are aware what they share and can filter

● Potential issues:
● Data is not realistic
● People recall particularly “prototypical” events
● Type of data might differ due to missing post creation triggers
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E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:

● Direct access to the author’s assessment
● Privacy: authors are aware what they share and can filter

● Potential issues:
● Data is not realistic
● People recall particularly “prototypical” events
● Type of data might differ due to missing post creation triggers

Fundamentals of Natural Language Processing Roman Klinger 34 / 46

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:
● Direct access to the author’s assessment

● Privacy: authors are aware what they share and can filter
● Potential issues:
● Data is not realistic
● People recall particularly “prototypical” events
● Type of data might differ due to missing post creation triggers

Fundamentals of Natural Language Processing Roman Klinger 34 / 46

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:
● Direct access to the author’s assessment
● Privacy: authors are aware what they share and can filter

● Potential issues:
● Data is not realistic
● People recall particularly “prototypical” events
● Type of data might differ due to missing post creation triggers

Fundamentals of Natural Language Processing Roman Klinger 34 / 46

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:
● Direct access to the author’s assessment
● Privacy: authors are aware what they share and can filter

● Potential issues:

● Data is not realistic
● People recall particularly “prototypical” events
● Type of data might differ due to missing post creation triggers

Fundamentals of Natural Language Processing Roman Klinger 34 / 46

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:
● Direct access to the author’s assessment
● Privacy: authors are aware what they share and can filter

● Potential issues:
● Data is not realistic

● People recall particularly “prototypical” events
● Type of data might differ due to missing post creation triggers

Fundamentals of Natural Language Processing Roman Klinger 34 / 46

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:
● Direct access to the author’s assessment
● Privacy: authors are aware what they share and can filter

● Potential issues:
● Data is not realistic
● People recall particularly “prototypical” events

● Type of data might differ due to missing post creation triggers

Fundamentals of Natural Language Processing Roman Klinger 34 / 46

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Introduction

● Synthetic data creation has advantages:
● Direct access to the author’s assessment
● Privacy: authors are aware what they share and can filter

● Potential issues:
● Data is not realistic
● People recall particularly “prototypical” events
● Type of data might differ due to missing post creation triggers

Fundamentals of Natural Language Processing Roman Klinger 34 / 46

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1



Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Approach: Data elicitation strategies

● Creation:

● “Think of an event that caused an emotion X in you.”
● “Write a social media post text about that.”
● “Select an image you want to share from a CC image data base.”

● Donation:

● “Pick a multimodal post from your social media timeline that you made because the
associated event caused emotion X.”
● “Copy paste the text and the image.”

● Recent:

● “Pick the 10 most recent posts from your social media timeline.”
● “Annotate them for the following emotion set.”

Fundamentals of Natural Language Processing Roman Klinger 35 / 46
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Data Example

Creation post labeled as surprise. Recent post labeled as anger.
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Are the subcorpora comparable? – Post Length

Joy

Surprise

Disgust

Fear

Sadness

Anger

0 100 200 300 400
Post length (characters)

Creation Donation Recent
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Are the subcorpora comparable? – Image Type
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Donation
Creation
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Are the subcorpora comparable? – Text–Image Relation

Text describes image

Text →  image

Image →  text

Image conveys emotion

Text conveys emotion

1 2 3 4 5
Response

Creation Donation Recent
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Are the subcorpora comparable? – Appraisal–Emotion
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Are the subcorpora comparable? – Participant acceptance
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Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Are the differences a problem?

Experiment

● Fine-tune RoBERTa with CLIP/early fusion to predict emotions
● Train on Donation vs. train on Creation

Results

● No big performance differences: F score .38 vs. .40
⇒ The experimentally elicited data is fine to optimize a model.

● But: The estimate on donated data is overall optimistic!
F score of .60 and .62.
⇒ Real data is required to estimate model performance.

● Zero-Shot prompting (Llama3.2-vision) leads to slightly better results for donated data.
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Emotion Analysis and Appraisals Appraisals and Argument Convincingness How to Collect Data? Take Home

Summary

● Appraisals are an emotion model that explain the cognitive evaluation process that is
part of an emotion
● Appraisals can be annotated and modeled
● …but they are subjective and require context
● Appraisals are a informative approach to explain argument convincingness
● Experimentally elicited data is fine for model training, but we need real data for
performance estimation
(shown for emotion categories only so far, though)

Fundamentals of Natural Language Processing Roman Klinger 44 / 46
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Thank you for
your attention.

Questions? Remarks?

?
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