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Introduction

sender
content receiver

context

● My research is about understanding and changing the message regarding …:
● …the content
● …properties of the sender
● …impact on the receiver
● …impact of context
● …the relation between sender and receiver
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Research Life Cycle

hypothesis

how is a particular kind of information realized in data?

how to create a useful system?

digital humanities

literary studies

psychology

social sciences

life sciences social media mining

today: emotions
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Emotion Analysis

Emotion Analysis Systems Category: Joy
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Emotion Analysis

Interesting from different perspectives:
● Computational linguistics:

● Challenging and not well explored how emotions are realized in languages.
● State of the art: Transfer learning from pretrained contextualized representations

● Computational modelling:
● Challenging classification and representation learning task
● World knowledge might be required (shared-task systems often use dictionaries)

● Psychology/Social sciences:
● Better understand emotions and their effects

● Applications ranging from humanities, social sciences over pharmacovigilance to
robotics and intelligent agents.
● Is Hate Speech about Anger?
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Emotions and Emotion Analysis

Which
emotion did

the sender feel
when writing a

message?

Which emotion is expressed in
the text? Towards whom?
What caused the emotion?

Which
emotion is the
message likely
to cause in the

reader?

context
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Emotions and Events

Emotions and Events are linked in (at least) two ways:

Emotions are events
● “Donald is happy about

his birthday present.”
● FrameNet Emotion Directed Frame:

● Event: “happy”
● Experiencer: “Donald”
● Stimulus: “his birthday present”
● …

⇒ Motivated the task of
emotion semantic role labeling
(happy to talk about in Q&A part)

Events cause emotions
● “There is a car on fire.”

● Relevant event for the speaker, might
cause fear.

● Requires interpretation of events to infer
possible emotions.

● Little previous work
● Udochukwu/He (2015), Shaikh et al.

(2009), Balahur et al. (2011)
● (main part of today’s talk,

coming up next)
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Definition of emotions and their linguistic realizations

Emotion (Scherer, 2005)
Emotions are “an episode of interrelated,
synchronized changes in the states of […] five
organismic subsystems in response to the
evaluation of a […] stimulus-event …”

Ekman (1999)

enttäuschtbereuend

hassend ehrfürchtig

fügsam

verliebtoptimistisch

streitlustig

nachdenklich

gereizt verärgert wütend

begeistert

froh

gelassen

erschrocken ängstlich besorgt

bewundernd

vertrauend

akzeptierend

achtsam

bereit

neugierig

gelangweilt

ablehnend

angewidert erstaunt

überrascht

verwirrttraurig

betrübt

Plutchik (2001)

“There is 
a car on 
fire.”

He was 
trembling.

“I feel bad.” “Uh, FU**.”

Cognitive
Appraisal

“This situation is
not in line with my goals.”

“Let’s run away.”

ExpressionFeeling Bodily 
symptom 

Action 
tendency
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Appraisal-based Emotion Classification

Emotion Analysis Systems Category: Joy

Feeler: “I”

Cue: “so happy”

Cause: “passed my habilitation”

Report of subjective feeling

Event appraisal
(No report of bodily symptoms, action tendencies)

Vocal Expression

Semantic Role Labeling Component Process Model

Appraisals

Pleasantness: High

Responsibility: High

Expected Effort: Low

Certainty: High

Attention: Medium

Attention: Medium

Sit. Control: Low

Category: Joy
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Emotion Components

Emotion Analysis Systems Category: Joy

Feeler: “I”

Cue: “so happy”

Cause: “passed my habilitation”

Report of subjective feeling

Event appraisal
(No report of bodily symptoms, action tendencies)

Vocal Expression

Semantic Role Labeling Component Process Model

Appraisals

Pleasantness: High

Responsibility: High

Expected Effort: Low

Certainty: High

Attention: Medium

Attention: Medium

Sit. Control: Low

Category: Joy
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A Multi-Task Learning-based Evaluation of the Usefulness of the

Emotion Component Process Model for Emotion Recognition in Text

Felix Casel
⇤
, Amelie Heindl

⇤
, and Roman Klinger

Institut für Maschinelle Sprachverarbeitung, University of Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany
{firstname.lastname}@ims.uni-stuttgart.de

Abstract

Models that tackle emotion classification from
text typically do not consider existing knowl-
edge about emotions that is available in psy-
chology, though it might potentially be useful
to guide the decision process. With this pa-
per, we address this research gap and use the
emotion component process model by Scherer
(2005) to inform the emotion classification.
This theory states that emotions are a coor-
dinated process of different subcomponents,
in reaction to an event, namely the subjec-
tive feeling, the cognitive appraisal, the ex-
pression, a physiological bodily reaction, and
a motivational action tendency. We hypothe-
size that these different components are asso-
ciated with linguistic realizations: an emotion
can be expressed by describing a physiological
bodily reaction (“he was trembling”), or the
expression (“she smiled”), etc. We annotate
existing literature and Twitter emotion corpora
with emotion component classes and show that
jointly learning to classify components and
emotion categories indeed helps the emotion
classification performance, by 4pp in F1. We
make our annotated corpora publicly available
at https://tinyurl.com/cpmcorpus.

1 Introduction

The task of emotion classification from written text
is to map textual units, like documents, paragraphs,
or sentences, to a predefined set of emotions. Com-
mon class inventories rely on psychological the-
ories such as those proposed by Ekman (1992)
(anger, disgust, fear, joy, sadness, surprise) or
Plutchik (2001). Often, emotion classification is
tackled as an end-to-end learning task, potentially
informed by lexical resources (see the SemEval
Shared Task 1 on Affect in Tweets for an overview
of recent approaches (Mohammad et al., 2018)).
⇤The first two authors contributed equally to this work.

While end-to-end learning and fine-tuning of pre-
trained models for classification have shown great
performance improvements in contrast to purely
feature-based methods, such approaches typically
neglect the existing knowledge about emotions in
psychology (which presumably helps in classifi-
cation). There are only very few approaches that
aim at combining psychological theories with emo-
tion classification models: We are only aware of
the work by Hofmann et al. (2020), who incor-
porate variables measuring a cognitive appraisal
of events into the emotion classification decision,
and Buechel et al. (2020), who jointly learn affect
(valence, arousal) and emotion classes.

An interesting and attractive theory for computa-
tional modelling of emotions that has not been used
in natural language processing yet is the emotion
component process model (Scherer, 2005, CPM).
This model states that emotions are a coordinated
process in five subsystems, following an event
that is relevant for the experiencer of the emotion,
namely an action tendency, the motor expression
component, a neurophysiological, bodily symptom,
the subjective feeling, and the cognitive appraisal.
The cognitive appraisal has been explored in a fine-
grained manner by Hofmann et al. (2020), men-
tioned above (without success to improve the emo-
tion classification). The subjective feeling compo-
nent is related to the dimensions of affect.1

We hypothesize (and subsequently analyze) that
emotions in text are communicated in a variety of
ways, and that these different stylistic means fol-
low the emotion component process model. The
communication of emotions can either be an ex-
plicit mention of the emotion name (“I am angry”),

1There exists other work that has been motivated by ap-
praisal theories, but that is either rule-based (Shaikh et al.,
2009; Udochukwu and He, 2015) or does not explicitly model
appraisal or component dimensions (Balahur et al., 2012;
Rashkin et al., 2018).
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Does Component Knowledge help Emotion Classification?

● Annotation of two corpora: TEC (Tweets) and REMAN (literature) for components
● Labels of TEC (one-of):

anger, disgust, fear, joy, sadness, surprise
● Labels of REMAN (many-of):

anger, disgust, joy, sadness, fear, surprise, trust, anticipation, other, neutral
● 2041 Tweets, 1000 sentence triples from Project Gutenberg
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Does Component Knowledge help Emotion Classification?

Examples
Cognitive
● I can’t stop.
● found my old lava lamp!

Bodily Reaction
● She did not know; she trembled.
● Apparently i might have alcohol

poisoning. #stupidgirl
Subjective
● Woman–woman–I love thee!
● bad day

Motivation
● We’re going out tonight.
● Sometimes I wanna take your head and

ram it into mirrors.
Expression
● An expression of annoyance appeared on

the emperor’s face.
● Finals tomorrow... ugh
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Multi-task Learning and Pipeline Model

BERT embeddings

CPM/Emo.

CNN

Dense

Bi-LSTM

Cpm-NN-Base
Emo-NN-Base

Emotions

CNN

Bi-LSTM

BERT embeddings

Dense

DenseDense

Emo-CPM-NN-Pred

C
p
m
-N

N
-B

a
seCPM

Dense

CNN

Bi-LSTM

CNN CNN

Bi-LSTM Bi-LSTM

BERT embeddings

Cross-Stitch

Dense Dense

Emotions CPM

XS-MTL
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How well can we predict components (Cpm-NN-Base)?
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Does Component Prediction help Emotion Categorization?
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Cognitive Appraisal

Emotion Analysis Systems Category: Joy

Feeler: “I”

Cue: “so happy”

Cause: “passed my habilitation”

Report of subjective feeling

Event appraisal
(No report of bodily symptoms, action tendencies)

Vocal Expression

Semantic Role Labeling Component Process Model

Appraisals

Pleasantness: High

Responsibility: High

Expected Effort: Low

Certainty: High

Attention: Medium

Attention: Medium

Sit. Control: Low

Category: Joy
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Appraisal Theories for Emotion Classification in Text

Jan Hofmann1, Enrica Troiano1, Kai Sassenberg2,3, and Roman Klinger1
1Institut für Maschinelle Sprachverarbeitung, University of Stuttgart, Germany
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Abstract

Automatic emotion categorization has been predominantly formulated as text classification in
which textual units are assigned to an emotion from a predefined inventory, for instance following
the fundamental emotion classes proposed by Paul Ekman (fear, joy, anger, disgust, sadness,
surprise) or Robert Plutchik (adding trust, anticipation). This approach ignores existing psycho-
logical theories to some degree, which provide explanations regarding the perception of events.
For instance, the description that somebody discovers a snake is associated with fear, based on
the appraisal as being an unpleasant and non-controllable situation. This emotion reconstruction
is even possible without having access to explicit reports of a subjective feeling (for instance
expressing this with the words “I am afraid.”). Automatic classification approaches therefore need
to learn properties of events as latent variables (for instance that the uncertainty and the mental
or physical effort associated with the encounter of a snake leads to fear). With this paper, we
propose to make such interpretations of events explicit, following theories of cognitive appraisal
of events, and show their potential for emotion classification when being encoded in classification
models. Our results show that high quality appraisal dimension assignments in event descriptions
lead to an improvement in the classification of discrete emotion categories. We make our corpus
of appraisal-annotated emotion-associated event descriptions publicly available.

1 Introduction

The task of emotion analysis is commonly formulated as classification or regression in which textual units
(documents, paragraphs, sentences, words) are mapped to a predefined reference system, for instance
the sets of fundamental emotions fear, anger, joy, surprise, disgust, and sadness proposed by Ekman
(1999), or by Plutchik (2001), which includes also trust and anticipation. Machine learning-based models
need to figure out which words point to a particular emotion experienced by a reader, by the author of
a text, or a character in it. Depending on the resource which has been annotated, the description of an
emotion experience can vary. On Twitter, for instance, other than direct reports of an emotion state (“I
feel depressed”), hashtags are used as emotion labels to enrich the description of events and stances (“I
just got my exam result #sad”). In news articles, emotional events are sometimes explicitly mentioned
(“couple infuriate officials” (Bostan et al., 2020)) and other times require world knowledge (“Tom Cruise
and Katie Holmes set wedding date”, labeled as surprise (Strapparava and Mihalcea, 2007)). In literature,
a sequence of events which forms the narrative leads to an emotion in the reader. In this paper, we focus
on those texts which communicate emotions without an explicit emotion word, but rather describe events
for which an emotion association is evident.

Such textual examples became popular in natural language processing research with the use of the data
generated in the ISEAR project (Scherer and Wallbott, 1997). The project led to a dataset of descriptions
of events triggering specific affective states, which was originally collected to study event interpretations
with a psychological focus. In text analysis, to infer the emotion felt by the writers of those reports, an

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Appraisal Annotation

Most probably, at the time when the event happened, the writer…
● …wanted to devote further attention to the event. (Attention)
● …was certain about what was happening. (Certainty)
● …had to expend mental or physical effort to deal with the situation. (Effort)
● …found that the event was pleasant. (Pleasantness)
● …was responsible for the situation. (Responsibility)
● …found that he/she was in control of the situation. (Control)
● …found that the event could not have been changed/influenced by anyone. (Circumstance)

(following concepts by Smith/Ellsworth, 1985)
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Corpus Selection

Corpus Annotation

Appraisal Prediction

Emotion Prediction

● Reannotation of event-centered corpus: Troiano/Padó/Klinger, 2019
● “Remember an event which triggered [emotion] and describe it:

‘I felt [emotion word], when…’ ”
● 1001 event descriptions, stratified by emotion

(anger, disgust, fear, guilt, joy, shame, sadness)

Examples

● I felt [sadness] when I saw a homeless cat on the street.
● I felt [shame] when someone commented that I was looking very untidy.
● I felt [anger] when the police did not update me on a crime.
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Annotation Results

Anger
Attention

Certainty

Effort

PleasantRespons.

Control

Circum.

Disgust
Attention

Certainty

Effort

PleasantRespons.

Control

Circum.

Fear
Attention

Certainty

Effort

PleasantRespons.

Control

Circum.

Guilt
Attention

Certainty

Effort

PleasantRespons.

Control

Circum.

Joy
Attention

Certainty

Effort

PleasantRespons.

Control

Circum.

Sadness
Attention

Certainty

Effort

PleasantRespons.

Control

Circum.

Shame
Attention

Certainty

Effort

PleasantRespons.

Control

Circum.
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Modelling and Experimental Setting

Corpus Annotation

Appraisal Prediction

Emotion Prediction

Text

Emotion

Text
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● Text classifiers: CNN with GloVe embeddings, fine-tuned RoBERTa
● Emotion from Appraisal:

Fully connected neural network with two layers
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Modelling Results

How well can we predict appraisal dimensions from text?
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Modelling Results

Can this approach improve emotion classification?

 0

 20

 40

 60

 80

 100

T→E T→A→E
Gold-A→E

T→AE (MT)

Oracle Ensemble

F
1
 M
e
a
s
u
re

Anger
Disgust

Fear
Guilt
Joy

Sadness
Shame

Avg
RoBERTa

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart Roman Klinger February 8, 2021 26 / 31

1 Introduction

2 Emotion Analysis Motivation

3 Appraisal-based Emotion Interpretation
Emotion Components
Cognitive Appraisal

4 Outlook

Outline
Introduction Emotion Analysis Motivation Appraisal-based Emotion Interpretation Outlook

Summary

● We presented the first work that combines
● emotion component process model,
● appraisal classification

with emotion classification
● Emotion component prediction helps to improve emotion classification
● Appraisal prediction has potential to improve emotion classification

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart Roman Klinger February 8, 2021 28 / 31

Introduction Emotion Analysis Motivation Appraisal-based Emotion Interpretation Outlook

Outlook

● How to make appraisals help emotion classification?
more data and other multi task learning methods (→ new DFG project)
● Are the appraisal annotations meaningful?

we study that by directly asking event experiencers (→ new DFG project)
● Does knowledge of semantic role positions in text improve emotion classification?

Yes, see Oberländer/Reich/Klinger (2020).
● Can we exploit SRL information/stimulus together with appraisal?

Maybe, that is a plan to investigate in the future.
● Is text-only sufficient or do we need image information?

It seems that mostly yes, but we look more into this.
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Thank you for your
attention.

Questions? Remarks?

?
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● Undergrads+Master Students
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● Jan Hofmann
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