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2 Emotions are Events
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Emotion Examples

Which emotion is associated
with the examples?

How did you recognize that?
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Emotion Examples

Which emotion is associated
with the examples?

How did you recognize that?

e “She became angry.”
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Emotion Examples

Which emotion is associated
with the examples?
How did you recognize that?

e “She became angry.”

e “Atearis running down his face.”
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Emotion Examples

Which emotion is associated
with the examples?

How did you recognize that?

“She became angry.”
“A tear is running down his face.”

“We are going for a walk at the beach.”
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Emotion Examples

Which emotion is associated
with the examples?

How did you recognize that?
“She became angry.”
“A tear is running down his face.”
“We are going for a walk at the beach.”

“Their dog ran towards me quickly.”

Roman Klinger 7/38
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Emotion Examples
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Which emotion is associated

with the examples?
With this exercise, we discussed:

e What is an appropriate set of emotions?

How did you recognize that?
e How are they expressed/recognized?

“She became angry.”

o M M M ”
A tear is running down his face. e Emotions are subjective.

“We are going for a walk at the beach.”

“Their dog ran towards me quickly.”

7/38
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Emotion Analysis: What we want to do.

a Roman Klinger

The @UniWiai organizes a "choose your chair" fair once every term to

bring students and faculty together early, even before the next term
starts. I've never seen such initiative anywhere before, and Lynn
Greschner and | enjoyed our first participation a lot.

Emotion Analysis System

Emotion Representation
Joy

NLP Fundamentals of Natural Language Processing Roman Klinger 8/38
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anger anticipation

disgust fear j sadness

surprise
A

romance adventure

mystery

humor

Kim et al., 2017.

Investigating the Relationship between Literary Genres and Emotional Plot Development. LaTeCH@ACL
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Emotion Dominant Emotion ’
Anger The Blaze, The Daily Wire, BuzzFeed
Annoyance  Vice, NewsBusters, AlterNet
Disgust BuzzFeed, The Hill, NewsBusters
Fear The Daily Mail, Los Angeles Times, BBC
Guilt Fox News, The Daily Mail, Vice
Joy Time, Positive.News, BBC
Love Positive.News, The New Yorker, BBC

Pessimism MotherJones, Intercept, Financial Times
Neg. Surprise The Daily Mail, MarketWatch, Vice

Optimism Bussines Insider, The Week, The Fiscal Times
Pos. Surprise Positive.News, BBC, MarketWatch

Pride Positive.News, The Guardian, The New Yorker
Sadness The Daily Mail, CNN, Daily Caller

Shame The Daily Mail, The Guardian, The Daily Wire
Trust The Daily Signal, Fox News, Mother Jones

Bostan et al., 2020.
GoodNewsEveryone: A Corpus of News Headlines Annotated

with Emotions, Semantic Roles, and Reader Perception. LREC
Fundamentals of Natural Language Processing Roman Klinger 10/38
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How to define a categorical system of emotions?

Ekman (1992): An argument for basic emotions.
AN & U5
BoamNLP

Fundamentals of Natural Language Processing

Roman Klinger

11738



0O0000e00

WWVERS/,
oNheH ) TF
oM o

Emotion Models in Psychology — Basic Emotions

How to define a categorical system of emotions?

e Distinctive universal signals
e Presence in other primates
e Distinctive physiology
e Distinctive universals in antecedent events
e Coherence among emotional response
e Quick onset
e Brief duration
e Automatic appraisal
e Unbidden occurrence
Ek@an (1992): An argument for basic emotions.
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Emotion Models in Psychology — Basic Emotions

How to define a categorical system of emotions?

Ekn

Distinctive universal signals

Presence in other primates

Distinctive physiology

Distinctive universals in antecedent events
Coherence among emotional response
Quick onset

Brief duration

Automatic appraisal

Unbidden occurrence

man (1992): An argument for basic emotions.
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Emotion Models in Psychology — Basic Emotions

How to define a categorical system of emotions?

Ekn

Distinctive universal signals

Presence in other primates

Distinctive physiology

Distinctive universals in antecedent events
Coherence among emotional response
Quick onset

Brief duration

Automatic appraisal

Unbidden occurrence

man (1992): An argument for basic emotions.
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Emotion Models in Psychology — Basic Emotions

How to define a categorical system of emotions?

Ekn

Distinctive universal signals

Presence in other primates

Distinctive physiology

Distinctive universals in antecedent events
Coherence among emotional response
Quick onset

Brief duration

Automatic appraisal

Unbidden occurrence

man (1992): An argument for basic emotions.
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How to define a categorical system of emotions?

content
delighted

glad

Arousal

alarmed

Valence

annoyed

Tisapproval

depressing angry

‘ -
4@,@‘

Surprise

e Emotion models in psychology explain how emotions are developed.
e Text analysis models learn to associate textual realizations to emotion concepts.
They do not (explicitly?) use knowledge from such theories.

Fundamentals of Natural Language Processing Roman Klinger 12/38
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Emotions and Events

Emotions and Events are linked in (at least) two ways:
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Emotions and Events are linked in (at least) two ways:

Emotions are events
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Emotions and Events

Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions
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Emotions and Events

Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions

“Donald is happy about
his birthday present.”
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Emotions and Events

Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions
e “Donald is happy about
his birthday present.”
e FrameNet Emotion Directed Frame:
Event: “happy”
Experiencer: “Donald”
Stimulus: “his birthday present”
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Emotions and Events

Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions
“Donald is happy about
his birthday present.”
e FrameNet Emotion Directed Frame:

e Event: “happy”

e Experiencer: “Donald”

e Stimulus: “his birthday present”
[ ]

= Motivated the task of
__emotion semantic role labeling

Fundamentals of Natural Language Processing Roman Klinger
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Emotions and Events

Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions

“Donald is happy about e “There is a car on fire.”

his birthday present.”
e FrameNet Emotion Directed Frame:

e Event: “happy”

e Experiencer: “Donald”

e Stimulus: “his birthday present”
[ ]

= Motivated the task of
emotion semantic role labeling
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Emotions and Events
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Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions
“Donald is happy about e “There is a car on fire.”
his birthday present.” e Relevant event for the speaker,
e FrameNet Emotion Directed Frame: might cause fear.

e Event: “happy”

e Experiencer: “Donald”

e Stimulus: “his birthday present”
[ ]

= Motivated the task of
emotion semantic role labeling

Fundamentals of Natural Language Processing Roman Klinger 13/38
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Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions

“Donald is happy about
his birthday present.”

e FrameNet Emotion Directed Frame:
Event: “happy”

Experiencer: “Donald”
Stimulus: “his birthday present”

= Motivated the task of
emotion semantic role labeling

Fundamentals of Natural Language Processing

“There is a car on fire.”

e Relevant event for the speaker,
might cause fear.

e Requires interpretation of events to
infer possible emotions.

Roman Klinger 13/38
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Emotions and Events

Emotions and Events are linked in (at least) two ways:

Emotions are events Events cause emotions
e “Donald is happy about e “There is a car on fire.”
his birthday present.” e Relevant event for the speaker,
e FrameNet Emotion Directed Frame: might cause fear.

Event: “happy” e Requires interpretation of events to
Experiencer: “Donald” infer possible emotions.

Stimulus: “his birthday present” o Little previous work
e Udochukwu/He (2015), Shaikh et al.

(2009), Balahur et al. (2011)

= Motivated the task of
__emotion semantic role labeling
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Emotions are Events
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Emotions are Events: Literature

BomNLP

Fundamentals of Natural Language Processing

Roman Klinger

WVERS,
_RICH-
‘*‘ N, 0,

17,
e

1538
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Emotions are Events: Literature

BomNLP

cause

When I[mentioned the house

experiencer
, |he|seemed

event

Fundamentals of Natural Language Processing

character

i

surprise
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Emotions are Events
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Emotions are Events: Literature

cause experiencer

event character surprise

experiencer

, [he] seemed [surprised.

experiencer target target
[All]laughed] , and [none louder]than|the forth member of the parliament ..
character disgust strong joy character
Joy

Fundamentals of Natural Language Processing
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Emotions are Events: Literature

cause experiencer
, [he] seemed [surprised.
event character surprise
experiencer target target experiencer

, and [none louder]than|the forth member of the parliament ..

[All]laughed]
character disgust
Joy

strong joy character
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Who Feels What and Why?
Annotation of a Literature Corpus with Semantic Roles of Emotions

Evgeny Kim and Roman Klinger
Institut fiir Maschinelle Sprachverarbeitung
University of Stuttgart, Pfaffenwaldring 5b, 70569 Stuttgart, Germany
evgeny.kim@ims.uni-stuttgart.de
roman.klinger@ims.uni-stuttgart.de
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Emotions are Events: News
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Emotions are Events

Emotions are Events: News ote

Emotion: Anger

Intensity: High

Other emotions: None

Reader perception: Yes

Reader emotions: Annoyance, Negative Surprise, No Emotion

re|
| Balaiad §
[A couple] [infuriated] [officials] by [landing their helicopter in the middle of a nature reserve

a Rv ~;! 5

AR,
BoamNULP Fundamentals of Natural Language Processing Roman Klinger 16 /38



Emotions are Events

ooe

Emotions are Events: News

BoamNLP

Emotion: Anger
Intensity: High

Other emotions:

None

Reader perception: Yes

Reader emotions: Annoyance, Negative Surprise, No Emotion

re|
| Balaiad §
[A couple] [infuriated] [officials] by [landing their helicopter in the middle of a nature reserve
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GoodNewsEveryone: A Corpus of News Headlines Annotated with
Emotions, Semantic Roles, and Reader Perception

Laura Bostan, Evgeny Kim, Roman Klinger
Institut fiir Maschinelle Sprachverarbeitung, Universitit Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany
{laura.bostan, evgeny.kim, roman.klinger } @ims.uni-stuttgart.de
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3 Appraisal-based Emotion Analysis
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Definition of Emotions: Components

Emotion (Scherer, 2005)
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Definition of Emotions: Components

Emotion (Scherer, 2005)

Emotions are “an episode of interrelated,
synchronized changes in the states of [...] five
organismic subsystems in response to the
evaluation of a [...] stimulus-event ...”

a !xs ~,! 5
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Definition of Emotions: Components

Event

Emotion (Scherer, 2005)

Emotions are “an episode of interrelated,
synchronized changes in the states of [...] five
organismic subsystems in response to the
evaluation of a [...] stimulus-event ...”

BomNLP
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Definition of Emotions: Components 0«3“

Event
Emotion (Scherer, 2005)
Emotions are “an episode of interrelated,
synchronized changes in the states of [...] five Feeling  Expression  Bodily Symptom
organismic subsystems in response to the Action Tendency  Cognitive Appraisal Components

evaluation of a [...] stimulus-event ...”

Fundamentals of Natural Language Processing Roman Klinger 18/38
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Definition of Emotions: Components 5:?
Event

Emotion (Scherer, 2005)
Emotions are “an episode of interrelated,
synchronized changes in the states of [...] five Feeling  Expression  Bodily Symptom
organismic subsystems in response to the Action Tendency  Cognitive Appraisal Components
evaluation of a [...] stimulus-event ...”

Fear Name

Fundamentals of Natural Language Processing Roman Klinger 18/38
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Cognitive Appraisal in Scherer’s Component Process model
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Implication |-

Coping |+ Normative

Significance

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.
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Cognitive Appraisal in Scherer’s Component Process model
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Event

Relevance [

Implication |-

: Normative
Coping =% Significance
Novelty

Intrinsic
Pleasantness

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.
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Cognitive Appraisal in Scherer’s Component Process model

P 3
E)—— Relevance [ Implication [ Coping [ Sl}lgor:mg;lr:/cee
Novelty Causality:
agent
[ ntrinsic | [ Goal |
Pleasantness conduciveness
[~ " Goal | | Outcome |
Relevance probability
] [ Urgeney |
| Causality |
motive
| Expectation |
discrepancy

K.R. Scherer (2001). Appraisal Considered as

a Process of Multilevel Sequential Checking.
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Cognitive Appraisal in Scherer’s Component Process model

-
s P : Normative
L%) —» Relevance [ Implication |- Coping [ Significance
Novelty Causality: Control
,,,,,,,,,,, agent | | _ _____ |
Intrinsic Golal Adjustment
| Pleasantness | | conduciveness | | " |
Goal Outcome P
| _Relevance | | probability | | P |
Urgency
Causality
motive
Expectation
discrepancy

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.
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Cognitive Appraisal in Scherer’s Component Process model

=
s P : Normative
o yorm
g —> Relevance [+ Implication s  Coping |- Significance
Novelty Causality: Control Internal
R e agent | | | | sEaEdEr(157 |
Intrinsic Golal Adjustment External
| Pleasantness | | conduciveness | | 7 " " | | standards |
Goal Outcome P
| _Relevance | | probability | | P |
Urgency
Causality
motive
Expectation
discrepancy

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.
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Research Questions

BomNLP

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories:
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1

). Hofmann et al. (2020). “Appraisal Theories for Emotion Classification in Text”. In: COLING

Fundamentals of Natural Language Processing Roman Klinger
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Research Questions

e Can appraisals be annotated reliably?

Corpus Creation,

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories:
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1

). Hofmann et al. (2020). “Appraisal Theories for Emotion Classification in Text”. In: COLING
20/38
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Research Questions

e Can appraisals be annotated reliably?

e Can we predict appraisal variables from event descriptions?

E. Troiano et al. (2023).

“Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1
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e Can appraisals be annotated reliably?

e Can we predict appraisal variables from event descriptions?
e Do appraisals help emotion categorization?

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1

J. Hofmann et al. (2020). “Appraisal Theories for Emotion Classification in Text”. In: COLING
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Research Questions

e Can appraisals be annotated reliably?
e Can we predict appraisal variables from event descriptions?
e Do appraisals help emotion categorization?

e Challenge: How to access the personal interpretation of an event?

E. Troiano et al. (2023). “Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation,
Annotation Reliability, and Prediction”. In: Computational Linguistics 49.1

). Hofmann et al. (2020). “Appraisal Theories for Emotion Classification in Text”. In: COLING
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e Production: 550 event descriptions for anger, boredom, disgust, fear, guilt/shame, joy,
pride, relief, sadness, surprise, trust, no emotion
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Appraisal Variables

(5) unpleasant

Goal Relevance
(6) goal-related

(11) consequence
anticipation

Urgency
(12) response urgency

Normative

Relevance Implication Coping Significance
Novelty Causality: agent Control Internal standards
(1) suddenness (7) own responsibility (19) own control* compatibility
(2) familiarity (8) other’s respons. (20) others’ control® (14) clash with own
(3) predictability (9) situational respons. |(21) chance control” standards/ideals
(16) attention”
(17) att. removal® Goal conduciveness Adjustment External standards

(10) goal support (13) anticipated compatibility
Intrinsic Pleasantness acceptance (15) clash with
(4) pleasant Outcome probability (18) effort® laws/norms
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Variable Assessement

Appraisal Variables

(1) The event was sudden or abrupt. (suddenness)
(2) The event was familiar. (familiarity)
(3) | could have predicted the occurrence of the event. (event predictability)
(4) The event was pleasant. (pleasantness)
(5) The event was unpleasant. (unpleasantness)
(6) | expected the event to have important consequences for me. (goal relevance)
(7) The event was caused by my own behavior. (own responsibility)
(8) The event was caused by somebody else’s behavior. (other responsibility)
(9) The event was caused by chance, special circumstances, or natural forces. (situational responsibility)
(10) I expected positive consequences for me. (goal support)
(11) I anticipated the consequences of the event. (anticip. conseq.)
(12) The event required an immediate response. (urgency)
(13) I anticipated that | would easily live with the unavoidable consequences of the event. (accept. conseq.)
(14) The event clashed with my standards and ideals. (internal standards)
(15) The actions that produced the event violated laws or socially accepted norms. (external norms)
(16) | had to pay attention to the situation. (attention)
(17) | tried to shut the situation out of my mind. (not consider)
(18) The situation required me a great deal of energy to deal with it. (effort)
(19) I was able to influence what was going on during the event. (own control)
(20) Someone other than me was influencing what was going on. (others’ control)
(21) The situation was the result of outside influences of which nobody had control. (situational control)

=B,
BomNULP Fundamentals of Natural Language Processing

All variables are similarly assessed by writers and readers

Additional Variables

Age, Gender
Ethnicity, Education

Event familiarity

for readers

Roman Klinger

Personality traits

openness
conscientiousn.
extraversion
agreeablenes
emotional stability

23/38
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Examples

pride | baked a delicious strawberry cobbler.
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Examples

pride | baked a delicious strawberry cobbler.

when there was a power outage in my home. That day, my wife and | were

fear | felt ...
filled me when

cuddling in the sitting room when a thunderstorm started. Then ...
thunder hit our roof and all the lights went off.
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Examples

pride | baked a delicious strawberry cobbler.

fear | felt... when there was a power outage in my home. That day, my wife and | were
cuddling in the sitting room when a thunderstorm started. Then ... filled me when

thunder hit our roof and all the lights went off.

joy | found the perfect man for me, and the more time goes on, the more | realized he was

the best person for me. Every dayis a ....

Roman Klinger 24 /38
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Questions and Answers

Setup:

e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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e Do readers agree more with each other than with the writers?

(does the writer make use of information that the readers do not have)

Setup:

e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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e Do readers agree more with each other than with the writers?
(does the writer make use of information that the readers do not have)
e Yes, a bit for emotions; clearly for the appraisals.

Setup:

e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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Questions and Answers

e Do readers agree more with each other than with the writers?
(does the writer make use of information that the readers do not have)

e Yes, a bit for emotions; clearly for the appraisals.

e Does it matter if annotators share demographic properties?

Setup:
e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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Questions and Answers

e Do readers agree more with each other than with the writers?
(does the writer make use of information that the readers do not have)

e Yes, a bit for emotions; clearly for the appraisals.
e Does it matter if annotators share demographic properties?
e Females agree more with each other, but men less.

Setup:
e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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Questions and Answers

e Do readers agree more with each other than with the writers?
(does the writer make use of information that the readers do not have)

e Yes, a bit for emotions; clearly for the appraisals.
e Does it matter if annotators share demographic properties?

e Females agree more with each other, but men less.
e People of similar age agree more.

Setup:
e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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Questions and Answers

e Do readers agree more with each other than with the writers?
(does the writer make use of information that the readers do not have)

e Yes, a bit for emotions; clearly for the appraisals.
e Does it matter if annotators share demographic properties?

e Females agree more with each other, but men less.
e People of similar age agree more.

e Does personality matter?

Setup:
e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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Appraisal-based EA
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Questions and Answers

e Do readers agree more with each other than with the writers?
(does the writer make use of information that the readers do not have)

e Yes, a bit for emotions; clearly for the appraisals.

e Does it matter if annotators share demographic properties?
e Females agree more with each other, but men less.
e People of similar age agree more.

e Does personality matter?

e Extraverted, conscientious, agreeable annotators perform better.
Setup:
e Filter instances for attribute, compare with F1 /RMSE

e Significance test with bootstrap resampling for .95 confidence interval
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler
fear, .84 A housemate came at me with a knife
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement
pride, .65 | baked a delicious strawberry cobbler
fear, .84 A housemate came at me with a knife

e All writers/readers agree on emotion, low average appraisal agreement

i Roman Klinger 26 /38
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement
pride, .65 | baked a delicious strawberry cobbler
fear, .84 A housemate came at me with a knife
e All writers/readers agree on emotion, low average appraisal agreement
disgust, 2.0 His toenails where massive
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler

fear, .84 A housemate came at me with a knife
e All writers/readers agree on emotion, low average appraisal agreement

disgust, 2.0 His toenails where massive

fear, 2.1 | felt ... going in to hospital
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler

fear, .84 A housemate came at me with a knife
e All writers/readers agree on emotion, low average appraisal agreement

disgust, 2.0 His toenails where massive

fear, 2.1 | felt ... going in to hospital

o All readers agree on the emotion, but not with the writer, high appraisal agreement
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler

fear, .84 A housemate came at me with a knife
e All writers/readers agree on emotion, low average appraisal agreement

disgust, 2.0 His toenails where massive

fear, 2.1 | felt ... going in to hospital

o All readers agree on the emotion, but not with the writer, high appraisal agreement
trust, joy, .87 | am with my friends
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler

fear, .84 A housemate came at me with a knife
e All writers/readers agree on emotion, low average appraisal agreement

disgust, 2.0 His toenails where massive

fear, 2.1 | felt ... going in to hospital
o All readers agree on the emotion, but not with the writer, high appraisal agreement

trust, joy, .87 | am with my friends

anger, fear, 1.1 My waters broke early during pregnancy
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler

fear, .84 A housemate came at me with a knife
e All writers/readers agree on emotion, low average appraisal agreement

disgust, 2.0 His toenails where massive

fear, 2.1 | felt ... going in to hospital
o All readers agree on the emotion, but not with the writer, high appraisal agreement

trust, joy, .87 | am with my friends

anger, fear, 1.1 My waters broke early during pregnancy

o All readers agree on the emotion, but not with the writer, low appraisal agreement
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Examples (writer/reader/avg. writer-reader agreement as error)

e All writers/readers agree on emotion, high average appraisal agreement

pride, .65 | baked a delicious strawberry cobbler

fear, .84 A housemate came at me with a knife
e All writers/readers agree on emotion, low average appraisal agreement

disgust, 2.0 His toenails where massive

fear, 2.1 | felt ... going in to hospital
o All readers agree on the emotion, but not with the writer, high appraisal agreement

trust, joy, .87 | am with my friends

anger, fear, 1.1 My waters broke early during pregnancy

o All readers agree on the emotion, but not with the writer, low appraisal agreement
pride, sadness, 1.7 That | put together a funeral service for my Aunt

BomNLP Fundamentals of Natural Language Processing Roman Klinger 26 /38



Appraisal-based EA

Appraisals add additional information to emotion analysis Shas.

Dimension Writer Readers A
Emotion Pride Sadness

Suddenness 4 3.6 0.4
Familiarity 1 2.0 -1.0
Predictability 1 1.8 —0.8

Goal-Relevance 4 1.4
Chance-Resp. 4 4.4 -0.4
Self-Resp. 1 1.2 -0.2
That I pUt t(?gether a Other-Resp. 1 1.4 -0.4
funeral service for my Aunt Conseq.-Predict. 2 18 02
Goal Support 1 1.2 -0.2
Urgency 2 3.8 -1.8

Other-Control 3 2.0 1.0
Standards 1 2.4 -1.4
Social Norms 1 1.2 -0.2
Attention 4 4.4 -0.4

Effort 4 4.6 -0.6

R _R 7,
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Modeling Results

Emotion
e Classification with RoBERTa-based models
e Appraisal Classification: 75 F; I Classiffmation |
e Emotion classification: 59 Fy
RoBERTa
¥
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Emotion

Classification with RoBERTa-based models

| Classification |

e Appraisal Classification: 75 F; 7
e Emotion classification: 59 Fy |
o + Appraisal.s: +2pp F1 RoBERT3 Appraisal
(+10 for guilt, +6 for sadness) F
Text
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Modeling Results

Emotion
e Classification with RoBERTa-based models
o Appraisal Classification: 75 F; I Classiffication |
e Emotion classification: 59 Fy |
e + Appraisals: +2pp F; RoBERTa .
(+10 for guilt, +6 for sadness) F Appraisal
= Appraisals help to build better models. Text
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Examples where Appraisals correct the Emotion Classifier

e When my child settled well into school
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Examples where Appraisals correct the Emotion Classifier

e When my child settled well into school

e broke an expensive item in a shop accidently

Fundamentals of Natural Language Processing

Roman Klinger

\\\\JHIY/
O owCH Uy, r*
@ A

oTTO ,%

trust—relief

guilt>shame

29/38



Appraisal-based EA
000000000000 e0

N\\\]kRY/
O owCH Uy, r*
U NI

Examples where Appraisals correct the Emotion Classifier
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e When my child settled well into school
trust—relief

e broke an expensive item in a shop accidently
guilt>shame

e my mother made me feel like a child
shame—anger
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Examples where Appraisals correct the Emotion Classifier

Appraisal-based EA
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When my child settled well into school

broke an expensive item in a shop accidently

my mother made me feel like a child

| passed my Irish language test
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pride—relief
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Examples where Appraisals correct the Emotion Classifier

BoamNLP

Appraisal-based EA
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When my child settled well into school
broke an expensive item in a shop accidently
my mother made me feel like a child

| passed my Irish language test

His toenails where massive

Fundamentals of Natural Language Processing

Roman Klinger
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guilt>shame
shame—anger
pride—relief

pride—~disgust
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Conclusion & Summary

e We presented the first self-annotated large-scale appraisal corpus
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Conclusion & Summary

e We presented the first self-annotated large-scale appraisal corpus
e Annotators can reliably recover both emotions and appraisals
(demographics play a significant but small role)

Fundamentals of Natural Language Processing Roman Klinger

\\\\IH?Wr
VowCH: Uy, *
Q A

oTTO ,%

30/38



Appraisal-based EA
0000000000000

Conclusion & Summary

e We presented the first self-annotated large-scale appraisal corpus

e Annotators can reliably recover both emotions and appraisals
(demographics play a significant but small role)

e Appraisals help emotion categorization for some emotion categories
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Fundamentals of Natural Language Processing Roman Klinger

(NIVERS;

W 7,
OYoCH.y, P
SMA °

30/38



Appraisal-based EA
0000000000000

WWVERS/,
oNheH ) TF
oM o

Conclusion & Summary

e We presented the first self-annotated large-scale appraisal corpus

Annotators can reliably recover both emotions and appraisals
(demographics play a significant but small role)

Appraisals help emotion categorization for some emotion categories

More importantly: Appraisals help to understand reasons for disagreement

R _R 7,
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4 What’s left to do?



What's left to do?
(o] lele]e]

What's left to do?

R. Klinger (2023). “Where are We in Event-centric Emotion Analysis? Bridging Emotion Role Labeling and Appraisal-
based Approaches”. In: Proceedings of the Big Picture Workshop
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What's left to do?

“Nala did not expect that Putu is angry when she took away his computer.”

R. Klinger (2023). “Where are We in Event-centric Emotion Analysis? Bridging Emotion Role Labeling and Appraisal-
32/38

based Approaches”. In: Proceedings of the Big Picture Workshop
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What'’s left to do? 3

“Nala did not expect that Putu is angry when she took away his computer.”

Writer Reader
other’s control clash with standards
‘ sadness ‘ Jvalency tarousal | Jfer neutral valency -arousal | [ 21 velevance
emotion affect appraisal emotion affect appraisal

R. Klinger (2023). “Where are We in Event-centric Emotion Analysis? Bridging Emotion Role Labeling and Appraisal-
based Approaches”. In: Proceedings of the Big Picture Workshop
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What'’s left to do? 3

“Nala did not expect that Putu is angry when she took away his computer.”

Writer Reader
other’s control clash with standards
‘ sadness ‘ Jvalency tarousal | Jfer neutral valency -arousal | [ 21 velevance
emotion affect appraisal emotion affect appraisal

context
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Nobody did model full emotion role labeling
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Current and Soon-to-Start Emotion-Related Work at BamNLP
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Event chains with LLMs

Prompt optimization

Johannes Schifer

Model robustness across domains Jiahui Li

SabineWeber E: Emotion-conditioned text generation
Emotions in arguments Yarik Menchaca Resendiz
"
Lynn Greschner Style transfer

L;‘; Multimodal emotions in social media  Aswathy Velutharambath

Chiis \iher Bagdon
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