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So happy that America is making it possible
for ALL of its people to be married to the
ones they love! #MarriageEquaility

2:48 PM - 6 May 2015

Which emotions are expressed?
Anger, Disgust, Fear, Joy, Sadness, Surprise
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Finally recorded the sheet music | made
a week or so ago... | wish | had my

keyboard, I'm not happy with the sound
quality &

Which emotions are expressed?
Anger, Disgust, Fear, Joy, Sadness, Surprise
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I'm not angry... just aggressively
disappointed.

Which emotions are expressed?
Anger, Disgust, Fear, Joy, Sadness, Surprise
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Goal of this work

* Get a better understanding of the use and impact of
modifiers on emotion expressions

* Extend previous work for sentiment and modifiers to
emotion classes

Not the goal

¢ Build the best classifier
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Emotion Models: Ekman (the classes we use)

Fear Sadness Surprise
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Other Emotion Models

Plutchik's Wheel

Valence-Arousal

content joyful

glad

Arousal

alarmed

Valence

bored annoyed

miserable frustrated

contempt ‘|
|boredom /

remorse ™

depressing angry

/- - ~ disapproval
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Modifiers

Negations

Downtoner
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Previous Work on Sentiment or/and Modifiers
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Previous Work

* Modifier scope detection:

* Rule based, e.g., Chapman et al., 2001
¢ Machine learning, e.g., Councill et al., 2010; Reitan et al., 2015
* Dependency-parsing, e.g., Jia et al., 2009

¢ Valence Shifting

¢ Rule-based, Polanyi/Zaenen 2006
(next slide, the work we extend)

* Machine learning-based, using sequence classifiers implicitly,
e.g., Felbo et al., 2017

e Several surveys: Wiegand, 2010; Zhu, 2014; Morante, 2012
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Previous Work on Sentiment or/and Modifiers
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Previous Approach in Sentiment Analysis
(Polanyi/Zaenen 2006)

Dictionaries:
* Dictionaries with (+2) and negative (-2) words
* Intensifiers (£3), diminishers (+1), negators (x(-1))
¢ Detect scope of modifier and change weight of words

Example
That is not

Score: -2

Question to Answer

What are appropriate factors
when we have more than two classes?
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Question

¢ How do we find the cue?
* How do we decide if an emotion word is in the scope?

University of Stuttgart Roman Klinger October 4, 2018 12/36



Methods and Results
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Cue Detection

Dictionary compiled from different sources

Filter for precision

* Negations: no never don't lacks ...

Amplifiers: deeply highly lots more ...
* Downtoners: almost quite partially some ...
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Methods and Results
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Scope Detection

* Next-n heuristic:
n tokens after cue, up to punctuation/adversive conjunction

cue scope

3] t9 USSR 77N 1
| S |
n tokens

* Dependency tree heuristic:
Rules on dependency tree, extended to more modifiers
(similar to Jia 2009: ) -

[ =l ]
I do not love or hate you .

PRP |VBP| [RB| (vB cc (vB PRP [ .|

* Machine learning:
Word and dependency tree based features
(similar to Councill 2010)
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Scope Detection: Results

90 —e— All modifiers
—=— Negations
—e— Amplifiers

—— Downtoners

o]
o

F,-measure

70
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Scope Detection: Results

Evaluation on manually annotated corpus for emotion words

Next-2 DepTree SVM
Modifier Fi Fi Fi

Negator 90.7 86.2 83.7
Amplifier 92.7 86.7 90.4
Downtoner  80.0 60.0 60.7
Macro-avg. 87.8 777 78.3
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Question

* Does this cue/scope detection improve
classification performance?
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Classification: Setting

Methods and Results
0000000

¢ SVM with bag of words, no n-grams with n> 1

* Prefix each word in scope with modifier-specific string
she does not like or trust but fear you

fr—

she does neg_like neg_trust but fear you

¢ Data, author-annotated via hashtags:

University of Stuttgart

Emotion Train Test
joy 597992 299.028
anger 59.591 29.501
fear 68.886  34.504
sadness 207.026 103.607
surprise 24.582 12.483
disgust 1.923 877
total 960.000 480.000

Roman Klinger
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Classification Results, All Data

All Data

90 T T T T T
BOW mmmm
80 I BOW+AIl Modifiers mmmm

60 b

40 - 1

F1 Measure

30 b

10 h

joy anger fear  sadness surprise disgust Macro
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Classification Results, Negation Data

Subset of Data with Negations
80 T T T T T

BOW mmmm
BOW+Negations mmmmm |

50 - b

40 i

F1 Measure

20 h

10 b

joy anger fear  sadness surprise disgust Macro

University of Stuttgart Roman Klinger October 4, 2018 20/36



Methods and Results
00000 [eole} 0000000000080000000000000 000

Classification Results, Amplifier Data

Subset of Data with Amplifiers

90 T T T T T T
BOW mmmmm
80 | BOW+Amplifiers mmmmm |

70 - 1

60 - b

40 - 1

F1 Measure

30 | 1

10 h

joy anger fear  sadness surprise disgust Macro
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Classification Results, Downtoner Data

Subset of Data with Downtoners

90 T T T T T T
BOW mmmmm
80 F BOW+Downtoners s |

60 b

40 - 1

F1 Measure

30 b

10 h

joy anger fear  sadness surprise disgust Macro
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Dictionary-based Classification: Setting

%°°Q®
& amplify
,g\c?&downtow
é\ob negate
& no mod,
anger [ ¢ Training:
S v : Hill climbing for F; on
‘é . = F=- PSS balanced training set
i} Joy .
- ¢ Inference:
5 disgust : P
s Maximum a postiori
g sadness e Example: “not happy”
A surprise
c a0 S g
4] 72 © -
T 3 3

Posterior Text Emotion
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Results: No Modifier

No Modifier

0.3 -0.8 -1.9 0.2 . 1.7
0.5 .-2.0 0.8 20 06

-1.7 0.2 -06 0.7

disgust
surprise
-0.9 0.1

sadness

04 04 -0.1

-0.8 . -0.8

fear [-1.9 -0.1 1.9

anger . 1.7 0.8

-0.1 0.2

joy | 1.0

joy
anger
fear
sadness
surprise
disgust
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-0.2 -0.2 -0.8 I

N W b

-

Weight

Roman Klinger

Methods and Results
00®000000000

* Diagonal has highest values
(green)

* Some emotion words do
not change other emotions
(white)

* Being angry doesn’t go well
with joy or surprise,
surprise not with anger
(red)
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Results: Negations

Negation
= 4 * Diagonal has low absolute
disgust | 02 0.1 -0.8 -0.7 0.0 0.1 || , values (except for surprise)
surprise [0.3 09 -09 10 25 1.8 2 (] Neg_joy—> sadness
sadness [ 1.0 0.5 -0.0 -0.3 -0.7 -0.2 15 * Neg. surprise — surprise
03 .
fear |-0.1 0.0 0.6 -05 -1.4. L% * Neg.sadness ~ joy
* Mostly lower positive
anger (-1.3 -0.0 -0.4 -1.0 -0.4 -2 .
weights, some strong
joy |-0.3 -o.o 12 09 07 I'3 negative weights
-4 .
385 5 8 8 @ * Some negations mean
& s £ g “nothing”: anger, disgust
o »
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Negation Examples

Joy = Sadness

“Not sure how this happened but in two days |I've somehow
gained 5 Ibs...so not happy about this. #ugly #fatty #depressed
#sad”

Sadness = Joy

“Yes! I'm about to eat this piece of cheesecake and | don't feel
guilty about it. #indulgingalittle #cheesecake #happy”

Fear = Fear

“Don’t worry, let God take control. #worry”
“"No fear is stronger than you are.” - Mark David Gerson #fear
#quote #spirituality”

University of Stuttgart Roman Klinger October 4, 2018 26/36



Methods and Results
00000@000000

Results: Downtoner

Diminisher

disgust | 0.6 -0.1 -0.4 -0.2. 1.0

surprise | 0.3 -0.0 1.0 0.7 1.8 -0.5
* Nothing surprising, similar
sadness -0.3. 0.3 0.7 -2.0.
0

N W b

-

5 to no modifier, mostly
[0} .

fear 22 18 10 04 23 15 | = lower weights

anger [1.0 15 1.0 06 -0.1 09 |[| 2 * Some exceptions, e.g.

“a bit sad” - no anger at all

joy | 0.8 .-1.7 -1.5 1.0 -0.7 I'3
-4

joy
anger
fear
sadness
surprise
disgust
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disgust
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fear
anger

joy
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Diminisher
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Downtoner Example

Sadness = Sadness, Joy

“pray more and worry less #pray #faith #love #peace
#happiness..."

Joy...
“Just a bit happy to be back in Ibiza...”
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e “Stronger” weights
* Especially clearer

separation from (some)

other emotions
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Amplifier Example

Joy = 2. Joy

“Wishing you a very happy day! #happiness #positivity’
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Results: Amplifier

Intensifier
disgust b d
surprise -05 1.2 m
sadness [-0.9 0.7 1.1 -05 0.9
fear
anger
joy

>
L

anger
fear
sadness
surprise
disgust
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No Modifier
disgust | 0.3 -0.8

surprise | 0.5 0.8 20 0.6
sadness (-1.7 0.2 -06 0.7 -09 0.1
fear -0.1 19 04 04 -0.1
anger 1.7 0.8 -0.8 -0.8
joy |1.0 -0.1 0.2 -0.2 -0.2 -0.8
c = c s o))
© k] = D
© 2 T

»n 7}
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Take Home

* Model enables interesting insights, mostly in line with
Plutchik’'s emotion model, but, first time, empirically shown.

* SVM with specific features performs better in prediction
tasks, specific handling is not (here) necessary practically

* Analysis reveals different uses of modifications
(e.g. comparisons need distinction)
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Ongoing and Future Work

* Represent modifiers in distributional spaces.
Optimize space to work well.

¢ Use attention mechanisms/other ways of model
introspection in deep learning approaches

e Compare to emotion intensity prediction tasks

* Analyze the use of modifiers and how specific they are for
each emotion.
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