

Universität Stuttgart Institut für Maschinelle Sprachverarbeitung

https://www.romanklinger.de/talks/zpid2023.pdf

Natural Language Processing Tasks and Methods

Challenges for Emotion Analysis and Generation

ZPID, Dec 13, 2023

Roman Klinger roman.klinger@ims.uni-stuttgart.de

)@roman_klinger **in** romanklinger https://www.romanklinger.de/

EA 00000 Zero-Shot Learning 0000000000000 Appraisal-based EA 0000000000 Prompt Search

Take Home O

About Myself

- 1999–2006: Studies at University of Dortmund: Computer science with minor psychology
- 2006–2010: Doctoral studies at Fraunhofer SCAI, St. Augustin: Biomedical text mining, machine learning
- 2010, 2013: Research visits at UMass Amherst: Probabilistic machine learning, MCMC inference
- 2011–2012: Postdoc at Fraunhofer SCAI: Social media mining, eGovernment
- 2013–2014: Postdoc at Bielefeld University: Sentiment analysis, opinion mining
- 2015: Co-Founder of Semalytix GmbH (exit 2020) Social Media Health Mining
- 2014–2024: (Senior) Lecturer/apl. Prof at IMS, Uni Stuttgart Natural Language Understanding and Generation
- 03/2024: Full Professor for Foundations of NLP, Uni Bamberg

EA 00000 ero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home O

Natural Language Processing Tasks

- NLP research does barely attempt to solve everything that humans can do.
- Instead: predefined (narrow) tasks.
- Some tasks are established and well defined.
- Others are still in the process of formalization.
- We will now look at a couple of examples.

ero-Shot Learning

Appraisal-based EA 00000000000 Prompt Search

Take Home O

Example Task: Named Entity Recognition

Example Input (one of many) to Instruct an Automatic Machine Learning Model

Input: Both Kai Sassenberg and André Bittermann work at the ZPID. Output: Kai Sassenberg; André Bittermann

Application

Input: Roman Klinger works at the University of Stuttgart. Output: Roman Klinger

- I specified the task with an example (standard machine learning setup: supervised learning).
- An alternative task specification would be an instruction: "Annotate all person names."

EA 00000 ero-Shot Learning

Appraisal-based EA 00000000000 Prompt Search 0000 Take Home O

Example Task: Machine Translation de-en

Example

Input: Roman Klinger arbeitet an der Uni Stuttgart. Output: Roman Klinger works at the University of Stuttgart.

EA 00000 Zero-Shot Learning

Appraisal-based EA 00000000000 Prompt Search 0000 Take Home O

Example Task: Conditional Text Generation

Example

Input: "When he walked into the restaurant", Joy Output: "he was delighted to see that his husband was already there." Iero-Shot Learning

Appraisal-based EA

Prompt Search 0000 Take Home O

Example Task: Natural Language Inference

Example

- Input: "A soccer game with multiple males playing.";
 "Some men are playing a sport."
- Output: entailment
- Input: "A man inspects the uniform of the person."; "The man is sleeping."
- Output: contradiction

EA 00000 ero-Shot Learning

Appraisal-based EA

Prompt Search 0000 Take Home O

expectations application requirements Users new data knowledge interpretation/analysis insight Researcher 2 Developer computational model modelling evaluation quality assessment annotation annotated corpus Annotators guidelines formalization e.g. as ontology Researcher 1

Natural Language Processing Research

- How to formalize a concept without inappropriately simplifying it, while making it "computable"?
- How to setup the annotation task such that it leads to reliable text assessements?
- How to model concept properties correctly such that annotations can be automatized?
- Do models generalize? Are users happy?

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Annotation Challenges

Questions

- Is the task objectively decidable? (entities vs. entailment or translation)
- Is the text alone sufficient to solve the task or is more context needed? (textual entailment vs. multimodal data or author profiling)
- Is it a classification or regression task?

(emotion classification vs. arousal regression)

Implications

- Do we have access to the context? How much to show?
- Show isolated instance or request comparative annotations?
- Carefully train annotation experts or do crowdsourcing?

EA 00000 Zero-Shot Learning 000000000000 Appraisal-based EA 0000000000 Prompt Search

Take Home O

Modeling

Find a function that takes:

- text (and additional information) as input
- and automatically predicts output/annotation.

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Modeling Approaches

- Rule-based methods, lexicon-based approaches
 - + Transparent
 - + Can be well grounded in theories
 - Often conceptually too simple
 - Difficult to achieve good performance
- Machine Learning/Deep Learning, Supervised or via Reinforcement Learning
 - + Learns the task from data
 - + No need to fully specify the task manually
 - $\circ~$ SOTA: Fine-tuning a pretrained language model
 - Data is required
 - Prone to overfitting to data
- Prompting, Prompt Learning; Learning from Instructions
 - + Potentially good generalization, potentially only needs few example instances
 - Needs a large (instruction-tuned) language model

EA 00000 ero-Shot Learning

Appraisal-based EA

Prompt Searcl

Take Home O

Prompting with Instruction-tuned

Step 1: Train a model to understand language: Language modeling objective

- Input: "I want to eat" Output: "Spaghetti".
- Observation: Input/Output pairs can be created without human supervision!

Step 2: Fine-tune this model to solve instructions

- Input: "Classify the sentiment: 'I like the company'" Output: "Positive".
- Obs.: We need many tasks & huge models to achieve generalization across tasks.

Step 3: Fine-tune with reinforcement learning from human-feedback on unseen tasks

- Given a human input and a model's output, let a human judge it's quality.
- Observation: We need many humans to do that.

EA 0000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search 0000 Take Home O

Example: Flan-T5 (1)

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Example: Flan-T5 (2)

Text Classification as Natural Language Inference

W. Yin et al. (2019). "Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach". In: EMNLP-IJCNLP

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Observation

All three model types can be used for zero-shot text analysis

- Models that predict the next word or a missing word
 - " 'He is happy.' The sentiment polarity of this statement is"
- Models tuned for natural language inference
 - "He is happy" "This sentence is positive."
- Instruction-tuned models
 - "What is the sentiment of the following sentence 'He is happy'? Answer with a digit only where 1 is positive and 2 is negative."

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

What's next?

- We have now seen a set of methods to solve NLP tasks.
 - NLI-based Zero-Shot Predictions
 - Fine-tuning language models; traditional ML/DL
 - Prompting with Instruction-tuned models
- I will now introduce emotion analysis.
- Then I will show three examples from this area with different methods:
 - NLI-based zero-shot emotion classification
 - Traditional ML for appraisal-based corpus creation
 - Prompt-based affective text generation

Outline

Emotion Analysis

Zero-Shot Learning for Emotion Classification

Appraisal-based Emotion Analysis

Prompt Search for Text Generation

ake Home

EA 0●000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search 0000 Take Home O

Emotion Analysis: What we want to do.

EA 00●00 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Literary Studies

Kim et al., 2017.

Investigating the Relationship between Literary Genres and Emotional Plot Development. LaTeCH@ACL

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

ZPID, Dec 13, 2023

20 / 52

Appraisal-based EA 0000000000 Prompt Search 0000 Take Home O

Dominant Emotions Expressed in News Articles

Emotion	Dominant Emotion	
Anger	The Blaze, The Daily Wire, BuzzFeed	
Annoyance	Vice, NewsBusters, AlterNet	
Disgust	BuzzFeed, The Hill, NewsBusters	
Fear	The Daily Mail, Los Angeles Times, BBC	
Guilt	Fox News, The Daily Mail, Vice	
Joy	Time, Positive.News, BBC	
Love	Positive.News, The New Yorker, BBC	
Pessimism	MotherJones, Intercept, Financial Times	
Neg. Surprise	The Daily Mail, MarketWatch, Vice	
Optimism	Bussines Insider, The Week, The Fiscal Times	
Pos. Surprise	Positive.News, BBC, MarketWatch	
Pride	Positive.News, The Guardian, The New Yorker	
Sadness	The Daily Mail, CNN, Daily Caller	
Shame	The Daily Mail, The Guardian, The Daily Wire	
Trust	The Daily Signal, Fox News, Mother Jones	

Bostan et al., 2020. GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception. LREC

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

 Take O

How to define a categorical system of emotions?

- Emotion models in psychology explain how emotions are developed.
- Text analysis models learn to associate textual realizations to emotion concepts. They do not (explicitly?) use knowledge from such theories.

Outline

Emotion Analysis

Zero-Shot Learning for Emotion Classification

Appraisal-based Emotion Analysis

Prompt Search for Text Generation

Take Home

EA 00000 Zero-Shot Learning

Appraisal-based EA 00000000000 Prompt Searcl

Take Home O

ZSL for Emotion Classification

- Often used labels in emotion classification in text: Ekman's basic emotions or a subset from Plutchik's wheel
- Sometimes domains require specific sets
- "Joy, insecurity, annoyance, relaxation, and boredom" to model emotions of drivers (Cevher, Zepf, Klinger, KONVENS 2019)
- "Aesthetic emotions" for poetry (beauty, awe, suspense, uneasiness, sadness, ...) (Haider, Eger, Kim, Klinger, Menninghaus, LREC 2020)
- Do we need to create an emotion corpus with domain specific labels for every new application domain where the label set changes?

EA 00000 Zero-Shot Learning

Appraisal-based EA

Prompt Search 0000 Take Home O

Emotion ZSL as Natural Language Inference

- Does it matter which NLI model we use as a backbone?
- How to represent the emotion?
- Does the hypothesis formulation need to be specific for a particular domain?

F. M. Plaza-del Arco et al. (2022). "Natural Language Inference Prompts for Zero-shot Emotion Classification in Text across Corpora". In: COLING

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Searcl

Take Home O

Emotion Hypotheses

Emo-Name		
	angry	
Expr-Emo	This text expresses anger	
Feels-Emo	This person feels anger	
WN-Def	This person expresses a strong emotion; a feeling that is ori- ented toward some real or sup-	
	posed grievance	

Emo-S	
	Same prefix + anger,
ExprS	annoyance, rage, outrage, fury,
FeelsS	irritation

Appraisal-based EA 0000000000 Prompt Searcl

Take Home O

Pretrained NLI Models

Data Set for Pretraining: MultiNLI Corpus, 433k sentence pairs:

Examples						
	Premise	Label	Hypothesis			
	Fiction					
	The Old One always comforted Ca'daan, except today.	neutral	Ca'daan knew the Old One very well.			
	Letters					
	Your gift is appreciated by each and every student who will benefit from your generosity.	neutral	Hundreds of students will benefit from your generosity.			
	Telephone Speech					
	yes now you know if if everybody like in August when everybody's on vacation or something we can dress a little more casual or	contradiction	August is a black out month for vacations in the company.			
	9/11 Report					
	At the other end of Pennsylvania Avenue, people began to line up for a White House tour.	entailment	People formed a line at the end of Pennsylvania Avenue.			

- https://cims.nyu.edu/~sbowman/multinli/
- Pretrained models from Huggingface, we use RoBERTa, BART, and DeBERTa

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Data Sets

• TEC (Mohammad 2012):

Twitter corpus, automatically labeled with emotion hashtags

Be the greatest dancer of your life! practice daily positive habits. [JOY]

• ISEAR (Scherer 1997):

Descriptions of emotional events, triggered by emotion name

When I was involved in a traffic accident. [FEAR]

• Blogs (Aman 2007):

Crowdsourced annotations of sentences from blogs

I've never missed anyone so much as you. [SADNESS]

Emotion labels: anger, fear, joy, sadness, disgust, surprise, guilt, shame

EA 00000 Zero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home O

The role of the NLI model

- Does the choice of the NLI model matter?
 - Performance differences between data sets are (mostly) independent of model
- Does the prompt matter regarding the data set?
 - WN-Def always lowest performance

Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

The role of the NLI model

- If one NLI model performs ZSL well on some domains, it also does so on others.
- That's great! New, better models probably improve the results across domains.

Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

The role of the prompt design

Is the emotion representation in the prompt specific to a domain/dataset?

- TEC: single emotion names work better than with synonyms
- BLOGS: synonyms harm the performance for Feels-Emo/S prompts
- Generally: synonyms help, except for some cases, in which annotaton procedure might be the reason

EA 00000 Zero-Shot Learning

Appraisal-based EA

Prompt Searc

Take Home O

The role of the prompt design (3)

There is not a single prompt which works well across all domains.

But: Putting multiple prompts together in a model ensemble works nearly en par with individual single prompts.

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Conclusion

- We showed the first evaluation of prompts across domains for emotion ZSL classification.
- The concrete NLI model which forms the backbone seems not to matter.
- There is not one individual prompt which works best for each domain

EA 00000 Zero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Where are we?

- We wanted to achieve a domain-independent and label-set independent model.
- We did pretty much achieve this, but the performance is lower than traditional machine learning methods.

Outline

ILP Research Methods

Emotion Analysis

Zero-Shot Learning for Emotion Classificatior

Appraisal-based Emotion Analysis

Prompt Search for Text Generation

ake Home

EA 00000 ero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home O

Appraisal Theories

- Appraisal theories explain the relation between emotions based on other dimensions.
- If we can build appraisal predictors, this might help to have more robust emotion prediction models.

Cognitive Appraisal in Scherer's Component Process model

K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.

Perhaps appraisals are an alternative, more general approach to emotion analysis?

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

ero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home O

Research Questions

- Can appraisals be annotated reliably?
- Can we predict appraisal variables from event descriptions?
- Do appraisals help emotion categorization?

E. Troiano et al. (2023). "Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation, Annotation Reliability, and Prediction". In: Computational Linguistics 49.1

J. Hofmann et al. (2020). "Appraisal Theories for Emotion Classification in Text". In: COLING

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

EA 00000 Zero-Shot Learning 000000000000 Appraisal-based EA

Prompt Search

Take Home O

Approach

• Production: 550 event descriptions for anger, boredom, disgust, fear, guilt/shame, joy, pride, relief, sadness, surprise, trust, no emotion

EA 00000 Zero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home O

Examples

pride I baked a delicious strawberry cobbler.

- fear I felt ... when there was a power outage in my home. That day, my wife and I were cuddling in the sitting room when a thunderstorm started. Then ... filled me when thunder hit our roof and all the lights went off.
- joy I found the perfect man for me, and the more time goes on, the more I realized he was the best person for me. Every day is a

ero-Shot Learning

Appraisal-based EA

Prompt Searcl

Take Home O

Questions and Answers

- Do readers agree more with each other than with the writers? (does the writer make use of information that the readers do not have)
 - Yes, a bit for emotions; clearly for the appraisals.
- Does it matter if annotators share demographic properties?
 - Females agree more with each other, but men less.
 - People of similar age agree more.
- Does personality matter?
 - Extraverted, conscientious, agreeable annotators perform better.

Setup:

- Filter instances for attribute, compare with $F_1/RMSE$
- Significance test with bootstrap resampling for .95 confidence interval

Examples (writer/reader/avg. writer-reader agreement as error)

- All writers/readers agree on emotion, high average appraisal agreement
 pride, .65

 I baked a delicious strawberry cobbler
 fear, .84
 A housemate came at me with a knife
- All writers/readers agree on emotion, low average appraisal agreement
 disgust, 2.0
 fear, 2.1
 His toenails where massive
 I felt ... going in to hospital
- All readers agree on the emotion, but not with the writer, high appraisal agreement trust, joy, .87

 I am with my friends
 anger, fear, 1.1
 My waters broke early during pregnancy
- All readers agree on the emotion, but not with the writer, low appraisal agreement pride, sadness, 1.7 That I put together a funeral service for my Aunt shame, relief, 1.8 I tasked with sorting out some files from the office the previous day and I slept off when I got home

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

EA 00000 ero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home

Modeling Results

- Classification with RoBERTa-based models
- Appraisal Classification: 75 $\ensuremath{\mathsf{F}}_1$
- Emotion classification: 59 $\ensuremath{\mathsf{F}}_1$
- + Appraisals: +2pp F₁ (+10 for guilt, +6 for sadness)
- \Rightarrow Appraisals help to build better models.

ero-Shot Learning

Appraisal-based EA

Prompt Search 0000 Take Home O

Examples where Appraisals correct the Emotion Classifier

- When my child settled well into school
- broke an expensive item in a shop accidently
- my mother made me feel like a child
- I passed my Irish language test
- His toenails where massive

trust→relief

guilt→shame

shame→anger

pride→relief

pride→disgust

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

EA 00000 Zero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home O

Conclusion & Summary

- We presented the first self-annotated large-scale appraisal corpus
- Annotators can reliably recover both emotions and appraisals (demographics play a significant but small role)
- Appraisals help emotion categorization for some emotion categories
- More importantly: Appraisals help to understand reasons for disagreement

Outline

NLP Research Methods

Emotion Analysis

Zero-Shot Learning for Emotion Classificatior

Appraisal-based Emotion Analysis

Prompt Search for Text Generation

EA 00000 ero-Shot Learning

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Conditional Text Generation via Prompt Search

Task

Generate text that expresses a predefined emotion.

Applications

Module of dialogue systems, intelligent agents, or (story-)writing assistants.

State of the art

Guide the decoding of the text generation with emotion specific information.

Novel Method

Automatic prompt optimization of instruction-tuned models.

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Roman Klinger

ero-Shot Learning

Appraisal-based EA 00000000000 Prompt Search

Take Home O

Method: Automatic Prompt Optimization

- Seed prompt: "Write a text that expresses (emotion)"
- Paraphrase: Replace/add/remove words in seed prompts
- Evaluation: Run generation process, evaluate with pre-trained emotion classifier
- Selection: Keep paraphrased prompts if performance is improved

Appraisal-based EA 0000000000 Prompt Search

Take Home O

Example of Input/Output Pairs during Optimization (Flan-T5)

- Write a text that expresses disgust
 - i don't know what to do about it.
- Write a text to expresses disgust
 - i'm disgusted.
- a text that expresses fear
 - a text that expresses fear
- Write in a text to expresses shame
 - i don't know how to express my shame.
- Write a text that to expresses shame
 - i'm sorry to hear that.
- Write in a long enough string to expresses joy
 - a long enough string to express joy.
- Write a long text string to expresses joy
 - i love you so much

EA 00000 Zero-Shot Learning

Appraisal-based EA

Prompt Search

Take Home

Take Home

- NLP Research is driven by task definitions and appropriate modeling
- Natural language inference can be applied for emotion classification without knowing the emotion categories in advance
- Annotation and language model fine-tuning: Appraisal theories as a novel approach to emotion analysis in text they support emotion classification and also do not require to fully specify the emotion set
- Automatic prompt optimization: Emotion-conditioned text generation very challenging to automatically find well-performing prompts.

EA 00000 Zero-Shot Learning 0000000000000 Appraisal-based EA 0000000000 Prompt Search

Take Home O

Thank you for your attention. Questions? Remarks?

Thanks to

- Ph.D. Students
 - Enrica Troiano
 - Laura Oberländer née Bostan
 - Yarik Menchaca Resendiz
 - Flor Miriam Plaza Del Arco
- Collaborators
 - Kai Sassenberg

Funded by
DEUTSche
Forschungsgemeinschaft
German Research Foundation

Universität Stuttgart Institut für Maschinelle Sprachverarbeitung

https://www.romanklinger.de/talks/zpid2023.pdf

Natural Language Processing Tasks and Methods

Challenges for Emotion Analysis and Generation

ZPID, Dec 13, 2023

Roman Klinger roman.klinger@ims.uni-stuttgart.de

)@roman_klinger **in** romanklinger https://www.romanklinger.de/

